CIS 631
Advanced Parallel Computing
Course Overview

Prof. Allen D. Malony
Department of Computer and Information Science
Winter 2022
Outline

- Logistics
- Background
- Overview
 - What is CIS 631
 - What is expected of you?
 - What will you learn in CIS 631?
Course Logistics

- **CIS 631 – Advanced Parallel Computing**
 - “Parallel Processing” in course listing
- **Lecture**
 - Tuesday/Thursday 14:00 – 15:20, 360 Condon
- **Final project presentations**
 - Wednesday, 12:30, March 16, 360 Condon (during final exam period)
- **No midterm or final exams**
- **Undergraduate course prerequisite**
 - CIS 431/531 – Introduction to Parallel Computing
 - CIS 429/529 – Computer Architecture
- **Webpage:** http://www.cs.uoregon.edu/Classes/22S/cis631
- **Assignment 0 (skills survey)**
 - Due Thursday, 12:00, January 6 (before class)
- **Assignment 1 (get system accounts!!)**
 - OACISS account: https://systems.nic.uoregon.edu/account
 - Use “Malony / CIS 631” for class affiliation
 - Provide temporary password (to be changed after account set up)
Heritage of CIS 631

- CIS 631 has been graduate course since I began at UO
- Parallel computing in undergraduate curriculum
 - CIS 607
 - Winter 2014 seminar to plan undergraduate course
 - Develop 410/510 materials, exercises, labs, …
 - Intel Parallel Computing Center (IPCC)
 http://ipcc.cs.uoregon.edu
 - CIS 410/510
 - Spring 2014 and Winter 2015 “experimental” course
 - CIS 431/531 – Introduction to Parallel Computing
 - Proposed in AY 2015/16 as a formal course
 - Spring 2017 (Norris) and Winter 2018 (Malony)

- Ok, so what about CIS 631?
CIS 631 – Advanced Parallel Computing

- CIS 631 is intended to be more “advanced”
 - Assume basic parallel computing knowledge
 - CIS 431/531 and 429/529 is a prerequisite (or equivalent)
 - Assume some experience with shared and/or distributed memory parallel programming
 - multi-threading and message passing
 - Assume experience with Unix/Linux program development environments

- Focus on more state-of-the-art methodologies, systems, environments, tools, ….

- Take on more sophisticated projects
- Consider current research and development directions
- Continued development of CIS 631 course
People in Parallel Computing at CIS/UO

- Allen D. Malony
 - Scalable parallel computing
 - Parallel performance analysis
 - Taught CIS 631 for many years
- Boyana Norris
 - High-performance computing
 - Automated software analysis / transformation
 - Performance analysis and optimization
- Hank Childs
 - Large-scale, parallel scientific visualization
 - Visualization of large data sets
- Jee Choi
 - High-performance tensor decomposition
 - Big Data analytics with HPC
Course Plan

- Cover main areas of parallel computing (lectures)
 - Introduction and Architecture (1 week)
 - Programming models (paradigms) (1 week)
 - High-level programming frameworks (1 week)
 - Runtime systems (1 week)
 - Performance analysis and tools (1 week)
 - Heterogeneous computing (1 week)
 - Libraries, algorithms and applications (1 week)
 - Parallel systems environments (1 week)

- Parallel programming training (tutorials)
Course Assignments

- Parallel programming training
 - Gain (greater) proficiency in parallel programming
 - Exercises to gain skills

- Individual project
 - Done after training
 - Demonstrate technical skills with parallel programming
 - Topic of individual interest
 - Due Sunday, February 19, midnight

- Team term project
 - Major programming project for the course
 - Non-trivial parallel application
 - 2-3 person team
 - Proposal: Friday, January 21, 17:00
 - Presentation: Wednesday, March 16, 12:30
 - Report: Wednesday, March 16, 12:30

- Research summary paper
 - Due Thursday, March 16, 17:00
Term Paper

- Investigate parallel computing topic of interest
 - More in depth review
 - Individual choice
 - Summary of major points

- Requires minimum of ten references
 - Book and other references has a large bibliography
 - Google Scholar, Keywords: parallel computing
 - NEC CiteSeer Scientific Literature Digital Library

- Paper topic due Tuesday, February 1, 14:00
 - Abstract and 8 research references
 - Final term paper due Thursday, March 16, 17:00
Grading

20% parallel programming training
20% individual programming project
35% team term project
25% research paper
Parallel Programming Technologies

- Strong focus on learning certain parallel programming methodologies and technologies
 - Objective is to increase your skill to a higher level
- Distributed memory message passing
 - MPI (https://www.mpi-forum.org)
- Shared memory multi-threading
 - OpenMP (https://www.openmp.org)
- Multicore (accelerator, coprocessor) programming
 - OpenACC (https://www.openacc.org)
- Excellent tutorials for each of these
Parallel Programming Training

- Several excellent online resources and tutorials
- See course website

Schedule for training

- **MPI**
 - Date: January 10-17 (2nd week)
- **OpenMP**
 - Date: January 17-24 (3rd week)
- **OpenACC**
 - Date: January 24-31 (4th week)
- **CUDA**
 - Date: February 1-8 (5th week)

- Self-guided with exercises
- Complete all exercises by February 14
NVIDIA Educator Resources

- Part of NVIDIA Developer

- NVIDIA teaching kits
 - Accelerated computing training
 - lecture slides, lecture videos, e-books
 - hands-on labs and coding projects
 - source code solutions
 - Access to online labs using cloud-based GPUs

- NVIDIA Deep Learning Institute (DLI)
 - DLI self-paced labs and workshops

- CUDA and OpenACC
PGI Community Edition

- PGI products deliver world-class multicore CPU performance, an easy on-ramp to GPU computing with OpenACC directives, and performance portability across all major HPC platforms
 - Free PGI Community Edition
 - Part of NVIDIA HPC SDK

- Features
 - PGI Accelerator Fortran/C/C++ compilers
 - Linux x86-64, Linux OpenPOWER, or macOS
 - OpenMP 3.1 for multicore CPUs
 - OpenACC 2.5 for multicore CPUs and manycore GPUs
Reference Parallel Programming Book

- Presents parallel programming from a point of view of patterns relevant to parallel computation
- Focuses on the use of shared memory parallel programming languages and environments
- Used in CIS 431/531
Reference Algorithms Books

 http://lotsofcores.com/

- Leverage parallelism on multicore processors and manycore processors
- Examples of successful programming efforts from industries and domains such as chemistry, engineering, environmental science
- Provides detailed explanations of the programming techniques used, with source code available
Recent OpenACC Books

- Both edited books with chapters by leaders in the parallel computing field
AXIS Cluster (OACISS)

- Nodes (repurposed ACISS cluster circa 2010)
 - (8x) ProLiant DL 580 G7
 - Four Intel X7560 2.266 GHz
 - 8-core CPU
 (32 cores total per node)
 - 2-way hyperthreaded
 (64 hardware threads per node)
 - 384GB DDR3 per node!

- Interconnect
 - 10 GigE (10 Gbits/second)
 - Infiniband (IB) (40 Gbits/second)

- Get accounts
WOPR Cluster (OACISS)

- WOPR (What Operational Parallel Resource)
- Built as a Next Unit of Computing (NUC) cluster with Intel funds
 - 16x Intel NUC
 - Haswell i5 CPU (2 cores, hyperthreading)
 - Intel HD 4000 GPU (OpenCL programmable)
 - 1 GigE, 16 GB memory, 240 GB mSATA
 - Logitech keyboard and mouse
 - Head node and GigE switch
- Cerberus head node
 - Dell 2x4 core E5-2603v2 CPU, 1.8 GHz, 32GB
 - Linux environment
 - Compilers: GCC, Intel 17, PGI
- WOPR accessed through Cerberus using SLURM
- ISO image with HPC Linux environment
 - Available for booting or running in VirtualBox
NVIDIA Jetson TX1 Cluster (OACISS)

 - NVIDIA Tegra SoC
 - Maxwell architecture GPU
- 16x TX1 development kits (http://www.nvidia.com/object/jetson-tx1-dev-kit.html)
- Can use the Jetson cluster for parallel programming projects
Accelerator Resources (OACISS)

- Variety of NVIDIA GPUs
 - GTX 980
 - Maxwell architecture, 2048 cores
 - K80
 - Kepler architecture, 4992 cores (dual-GPU)
 - Tesla P100
 - Pascal architecture, 3584 cores
 - Quadro GV100
 - Volta architecture, 5120 cores

- Several Intel Xeon MIC
 - Many Integrated Cores (MIC)
 - Knights Landing architecture
 - 72 cores each with
 - 2 vector processing units (AVX512)
Talapatas Cluster

- HPC cluster at UO
 - 250 Tflops and 1.5 Petabytes
- Maintained by RACS
 - Research Advanced Computing Services (RACS)
 - https://hpcf.uoregon.edu
- Talapas specifications

<table>
<thead>
<tr>
<th>Qty</th>
<th>Node Type</th>
<th>Processors (total cores)</th>
<th>Memory</th>
<th>Local Storage</th>
<th>Networking</th>
<th>Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>Standard Nodes</td>
<td>dual E5-2690v4 (28 cores)</td>
<td>128GB</td>
<td>200GB SSD</td>
<td>Single Port EDR InfiniBand</td>
<td>N/A</td>
</tr>
<tr>
<td>24</td>
<td>GPU Nodes</td>
<td>dual E5-2690v4 (28 cores)</td>
<td>256GB</td>
<td>200GB SSD</td>
<td>Single Port EDR InfiniBand</td>
<td>Dual NVIDIA Tesla K80</td>
</tr>
<tr>
<td>8</td>
<td>Large Memory Nodes</td>
<td>quad E7-4830v4 (56 cores)</td>
<td>1TB, 2TB, or 4TB</td>
<td>dual 480GB SSD</td>
<td>Single Port EDR InfiniBand</td>
<td>N/A</td>
</tr>
</tbody>
</table>
What will you get out of CIS 631?

- In-depth understanding of parallel computer design
- Knowledge about how to program parallel computer systems
- Understanding of parallel programming paradigms
- Exposure to different forms of parallel algorithms
- Practical experience using parallel technology
- Background on parallel performance modeling
- Techniques for empirical performance analysis
- Fun and new friends!
COVID-19

- All UO courses will be in-class for Winter 2022 (for the time being)
 - If you not feeling well, please do not come to class
- CIS 631 lectures will be in-class
 - Zoom will be used for remote presentation if you can not attend
 https://uoregon.zoom.us/j/96135388067
 - Lectures will be recorded and made available
- Please try to healthy with masking and testing