CIS 313, Loop Invariant Examples

January 20, 2022

• Example 1
Our goal is to prove the correctness of the ArrayFind algorithm:

Algorithm arrayFind(x,A):
Input: An element x and an n-element array, A.
Output: The index i such that x = A[i] or -1 if no element of A is equal to x.
i = 0
while i < n do
 if x == A[i] then
 return i
 else
 i = i + 1
return -1

This example proof is a little more verbose than necessary, but we will include extra detail to make it as clear as possible.

We will prove that, if the loop terminates (without returning early), then x is not in A. The loop condition, γ, is: “i < n”. We define the loop invariant, α, as: “0 ≤ i ≤ n and x is not stored in A[0..(i − 1)]”, where A[0..(i − 1)] refers to the values stored in array A from indices 0 through i − 1, inclusive. We now use this loop invariant to prove the correctness of the loop by showing that it satisfies all three properties:

(i) Initialization: From the assignment statement before the start of the loop, i = 0. Clearly, 0 ≤ 0 ≤ n. Because i = 0, A[0..i − 1] is an array of zero elements and the second half of the invariant is trivially true.

(ii) Maintenance: Let i refer to the value of variable i at the beginning of the loop and i’ to its value at the end of the loop. From the execution of the loop body, i’ = i + 1. Since 0 ≤ i (from α) and i < n (from γ), 0 ≤ i + 1 ≤ n, so 0 ≤ i’ ≤ n. Furthermore, from α we know that x is not contained in A[0..(i − 1)]. From the loop body, if the loop continues then x is not in A[i] either. Therefore, x is not contained in A[0..i’]. From the definition of i’, we can conclude that x is not contained in A[0..(i’ − 1)] and the invariant remains true with the new value of i.

(iii) Termination: Since 0 ≤ i ≤ n (from α) and i < n (from γ), i = n. Substituting i = n back into the loop invariant, we can conclude that x is not stored in A[0..(n − 1)], which is the entire array.

• Example 2

Question: Use a loop invariant to prove the correctness of the following algorithm for finding the maximum element on an array:

This example is taken from Chapter 1 of the data structures textbook by Goodrich and Tamassia, which used to be the standard textbook for CIS 313.

1If the algorithm does return early, then from the preceding if statement we know that it must have found x and is returning the correct index. Therefore, whenever the algorithm returns early it returns the correct result.
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element A

currentMax = A[0]
i = 0
while i < n-1 do
 if A[i+1] > currentMax
 currentMax = A[i+1]
i = i + 1

Answer: We use the loop invariant: “0 ≤ i ≤ n − 1 and currentMax is the maximum value stored in A[0..i]”, where A[0..i] refers to the values stored in array A from indices 0 through i, inclusive. We now use this loop invariant to prove the correctness of the loop by showing that it satisfies all three properties:

(i) From the initialization statements, i = 0 and currentMax = A[0]. Because i = 0, A[0..i] = A[0], so the maximum value stored in A[0..i] is simply A[0]. From the precondition, currentMax already equals this value, satisfying the loop invariant. Also, since i = 0, clearly 0 ≤ i ≤ n − 1.

(ii) Let the primed variables i’ and currentMax’ refer to the values of i and currentMax at the end of the loop, and the unprimed variables i and currentMax to their values at the beginning of the loop. From the execution of the loop body, i’ = i + 1. Since 0 ≤ i (from α) and i < n − 1 (from γ), 0 ≤ i + 1 ≤ n, so 0 ≤ i’ ≤ n. Furthermore,

\[
\text{currentMax’} = \max(\text{currentMax}, A[i+1])
\]

Execution of the loop
= \max(\max(A[0..i]), A[i+1])
Follows from α
= \max(A[0..i+1])
max is associative
= \max(A[0..i’]).
Substitution

Since the new values currentMax’ and i’ satisfy the loop invariant, α remains true at the end of the loop.

(iii) Since 0 ≤ i ≤ n − 1 (from α) and i < n − 1 (from ¬γ), i = n − 1. Therefore, currentMax is the maximum value stored in A[0..n − 1], which is the maximum value in A.