CIS 313: Intermediate Data Structure

sixth slide
expected behavior

• if list a is chosen randomly from among all n! permutations
• how long does “for i=1 to n T.insert(a_i)” take?
• worst case: O(n^2)
• want to argue: on average O(n \lg n)

• main fact: expected search time (1+1/n) in BST built from randomly chosen permutation is

$$2 \cdot \ln(n + 1) + O(1) \approx 1.38 \log_2 n + O(1)$$
observations

• this does not bound the height of the tree
• exercise 12.4-2, p 303: describe a binary search tree on n nodes such that the average depth of a node in the tree is $\Theta(\lg n)$ but the height of the tree is $\omega(\lg n)$
• stronger result: height of randomly built BST is is $\Theta(\lg n)$
• new goal: maintain BST whose height is is $\Theta(\lg n)$ in the worst case
• self balancing search trees: AVL, red-black, B-trees
balanced tree

• not realistic to expect perfectly balanced tree

• one attempt (not common): \textit{weight-balance}, where the number of nodes in left and right subtrees of any node must be close to each other

• better: \textit{height-balance}, the height of the left and right subtrees must be close

• AVL: differ by one

• red-black: differ by factor of two

• balance maintained by rotations
rotation: single
rotations: double

Composed from two single rotations.
AVL trees

• (not in text)
• named after inventors Adelson-Velskii and Landis
• store at each node the balance factor:
 • \(\text{bf}(p) = \text{height}(p.\text{lchild}) - \text{height}(p.\text{rchild}) \)
 • requirement: for every node \(p \), \(\text{bf}(p) \) equals -1, 0, or 1
• requires two bits extra storage at each node
AVL height is $O(\log n)$

- let G_k be an AVL tree (shape) of height k with the fewest number of nodes
- G_k can be constructed inductively as a node with a G_{k-1} left child and a G_{k-2} right child
- define g_k to be the number of nodes in a G_k tree
- $g_0 = 1$, $g_1 = 2$, $g_k = 1 + g_{k-1} + g_{k-2}$
- sequence: 1, 2, 4, 7, 12, 20
- fact: $g_k = F_{k+3} - 1$ ("easy" to prove with induction)
trees G_k and values g_k

G_0

G_1

G_2

G_3

$g_0 = 1$

$g_1 = 2$

$g_2 = 4$

$g_3 = 7$

G_k

G_{k-1}

G_{k-2}

$g_k = 1 + g_{k-1} + g_{k-2}$
AVL tree height: the punchline

• if \(n \) is the number of nodes in an AVL tree of height \(H \) then
 \[
 n \geq g_H = F_{H+3} - 1
 \]

• we know \(F_k = \left\lfloor \varphi^k / \sqrt{5} \right\rfloor \), where \(\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618 \)

• \(\lg F_{H+3} \geq \lg \frac{\varphi^{H+3}}{\sqrt{5}} - 1 = (H + 3) \lg \varphi - \lg \sqrt{5} - 1 \geq (H + 3) \lg \varphi - 4 \)

• so \((H + 3) \lg \varphi - 4 \leq \lg F_{H+3} \leq \lg(n + 1) \) (take log of both sides of top line)

• moving terms around: \(H \leq \frac{\lg(n+1)+4}{\lg \varphi} - 3 \approx 1.44 \lg(n + 1) + O(1) \)
AVL insertion

• insert node as with a BST (add it to a null pointer)
• update balance factors along path from new node to root
• the balance factors of some nodes may in violation: 2 or -2
• find the critical node: the lowest out of balance node
• perform the appropriate rotation

• note: this will affect the balance factors of nodes above it
• total insertion time $O(\lg n)$
AVL insertion

Four Possible Cases

bf(x) = +2 and bf(x.left) = 1
 rightRotate(x)
bf(x) = +2 and bf(x.left) = -1
 leftRotate(x.left)
 rightRotate(x)
bf(x) = -2 and bf(x.right) = -1
 leftRotate(x)
bf(x) = -2 and bf(x.right) = 1
 rightRotate(x.right)
 leftRotate(x)

Pictures from Wikipedia
2-3 and 2-3-4 trees

• quick intro here, we will return to them later as B-trees
• a 2-3 tree is a B-tree of order 3 (see ex 18-2, p 503, of text)
• these use multi-way search nodes
• must be perfectly balanced: all paths from the root to a null node have the same length
• insertions cause splits rather than rotations

• important: red-black trees (our real focus) are a binary implementation of 2-3-4 trees
multiway search nodes

- 4
 - elements < 4
 - elements > 4

- 4 10
 - elements < 4
 - elements > 4 and < 10
 - elements > 10

- 4 10 20
example
insertion: splitting nodes

• can split a node when it is full or has overflowed
• splitting on insertion can be bottom-up
 • put node at bottom of tree, if over-flow, split on the way up
• or top-down
 • when looking for insertion point, if full node seen, split it
• most B-tree implementations use bottom up (less space)
splitting a full node

```plaintext
insert 10 into parent
```
red-black trees and 2-3-4 trees

- a 2-3-4 tree node would need up to 4 child pointers
- frequently unused so waste of space
- red-black tree is binary tree implementation of 2-3-4 tree
- uses rotations to handle the splits
- need one bit to indicate color
 - descending the tree, black means "new node"
 - red means "belong to parent"

- Java uses RB trees in the TreeMap class
 (https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html)
2-3-4 nodes as RB nodes (2- and 3-nodes)
2-3-4 nodes as RB nodes (4-nodes)

In an RB tree

4 10 20

a 4-node
example RB tree
viewed as 2-3-4 tree
red-black tree rules

1. every node is either red or black
2. the root is black
3. every leaf (null) is black
4. if a node is red, both of its children are black
5. for each node, all simple paths from the node to descendant leaves contain the same number of black nodes