CIS 313: Intermediate Data Structure

fourth slide
hash tables

• chapter 11

• we want to manage a dynamic set $K (|K| = n)$ where each element has a key in universe $U = \{0,1,...,m-1\}$

• support efficient operations SEARCH, INSERT and DELETE (i.e, in $O(1)$)

• if m is small, an array $T[0,...,m-1]$ would suffice

• each slot in T corresponds to a key in the universe

• if the set doesn’t contain key k, then $T[k] = \text{NIL}$.
hash tables

• if $|U|$ is large, an array of size $|U|$ might be impractical/impossible
• idea: the number of keys actually used n might be much smaller than $|U|$
• we can thus reduce the storage requirement while still achieving the efficiency
• hash table: store n items of K in a table T of size m ($m << |U|$)
• hash function h determines where to put an item ($h: U \rightarrow \{0,1,\ldots,m-1\}$)
• issues
 • what to do when two items hash to same location (collision)
 • how to choose good hash function h (minimize collisions)
 • how to choose table size m
 • dynamically increase table size
 • important in databases but not addressed here
collision resolution

• what to do with two items x and y that hash to same location?
• \(h(x.\text{key}) = h(y.\text{key}) \)

• open addressing
 • look at other locations in the table
 • table might overflow
 • more complicated

• closed addressing
 • all items that hash to location t stay there in some structure
 • bucket, linked list, ...
chaining

- first: simple version of chaining
- table T with m slots, each containing a linked list
- hash function h maps keys to \{0, 1, ..., m-1\}
- \text{INSERT}(T, x): put x in a node at the head of T[h(x.key)]
- \text{SEARCH}(T,k): search for an item with key k in the list T[h(k)]
- \text{DELETE}(T,x): delete x from the list T[h(x.key)] (done in O(1) with doubly linked list)
- load factor: \(\alpha = n/m \), where n is the number of items in the set.
- simple uniform hashing (ideal): search time is \(1 + \Theta(\alpha) \) (average-case)
- also called \textit{closed addressing} (since item stored at that location)
choosing a hash function

• let \(k \) be the key and \(T \) a table of size \(m \)
• want \(h(k) \) to distribute keys uniformly across locations \(\{0,1,\ldots,m-1\} \)
 (i.e., approximate the simple uniform hashing)
• division method: \(h(k) = k \mod m \)
 • choice of table size \(m \) important
 • if \(m=2^p \), then only low order bits of \(k \) matter (poor choice)
 • if \(k \) not distributed well, then \(h(k) \) prone to be biased
 • best if \(m \) a prime
multiplication method

• pick constant A with 0<A<1

• \(h(k) = \lfloor m \cdot ((k \cdot A) \mod 1) \rfloor \) (here “mod 1” means fractional part of real number)

• Knuth suggests \(A = \frac{\sqrt{5} - 1}{2} \approx 0.6180339 \ldots \)

• nice example on p 264 of text
universal hashing

• problem with fixed hash function: all keys might hash to same slot
• universal hashing: family of hash functions \mathcal{H}, maps key universe U onto $\{0, 1, ..., m-1\}$
• remark: no single input will always exhibit worst-case behavior (good average-case performance)
• want for any $k, l \in U$ that the number of $h \in \mathcal{H}$ such that $h(k) = h(l)$ is at most $\frac{|\mathcal{H}|}{m}$ (universal hashing)
• idea is to pick an $h \in \mathcal{H}$ randomly if possible
• intuitively if keys $k \in U$ not distributed well a random $h \in \mathcal{H}$ will still distribute the locations well and excess avoid collision
• example family: \mathcal{H} will depend on fixed p, m
 • m is table size, $p>m$ is a prime so that all keys $k<p$
 • choose a, b with $0 < a < p$, $b < p$ (randomly)
 • $h(k) = ((ak+b) \mod p) \mod m$
 • proof that \mathcal{H} is universal in text, depending on basic number theory (nice proof)
back to collision resolution: open addressing

• instead of using lists in chaining, all elements are stored in the hash table, so no storage requirement for points, saving spaces to reduce collisions
• for key k=x.key, if location T[h(k)] is full (via collision), need to put x in a different location
• look in a sequence of locations depending on k. This is called the probe sequence
• using the hash function h<k,i> to determine the slot to probe at time i on key k
• look in locations h<k,0>, h<k,1>, h<k,2>, ... until find empty slot in which to place x
• requirement: for every key k, (h<k,0>, h<k,1>, ..., h<k,m-1>) be a permutation of (0,1,...,m-1) so every position of the hash table is considered eventually
strategies for probe sequences

• simplest (and worst): *linear probing*
 • \(h_{<k,i>} = (h(k)+i) \mod m \)
 • that is, if \(h(k) \) is full, look in locations \(h(k)+1, h(k)+2, h(k)+3, ... \)
 • problem: primary clustering (slots are clustered in long lines)

• quadratic probing
 • pick constants \(c, d \)
 • \(h_{<k,i>} = (h(k) + c*i + d*i^2) \mod m \)
 • \(c, d, m \) need to be chosen carefully so that \(h_{<k,i>} \) can probe entire table
 • problem: secondary clustering (milder than primary clustering)

• double hashing (the current best one)
 • use two hash functions \(h_1, h_2 \)
 • \(h_{<k,i>} = (h_1(k) + i*h_2(k)) \mod m \)
 • need \(m \) and \(h_2(k) \) to be relatively prime
other uses of hash functions

• database indexing
 • need extendible hash tables as many insertions happen
 • not good for range queries ("find all values between a and b")
 • B-tree indexes more popular

• cryptographically secure hashing
 • password files
 • multi-party communication
 • hash functions very different looking

• Bloom filters, count-min sketch
count-min sketch

• problem: count events in a data-stream, many possible events (n large), want number of occurrences of each event
• conventional data structure too large
• count-min sketch is probabilistic structure, uses sub-linear space
• idea: table size of w columns and d rows
• each row j associates with hash function h_j mapping to $\{0,1,...,w-1\}$
• when event e occurs, increment location $[j, h_j(e)]$
• estimate of number of occurrences of an event is the min of all locations $[j, h_j(e)]$
count-min sketch (cont’d)
properties of count-min

- use $O(1)$ in both time and space (no new memory allocation when (many) events are added
- good for parallelization
- never underestimate the numbers of occurred events