CIS 313:
Intermediate Data Structure

third slide
binary heap implementation of PQ

• most common implementation
• operations are $O(\log n)$
• uses a binary tree structure
• except that the tree is stored in an array with no pointers
• it is an *implicit* tree, children and parents inferred from location in array

• PQSort becomes *heapsort*
binary heap

• stored in array

• item located in position i
 • parent in location $[i/2]$
 • left child in position $2i$
 • right child in position $2i + 1$

• tree is complete
 • all nodes have two children, except maybe parent of “last” one

• tree maintains heap property
 • value stored at location i is greater than or equal to values stored in both its children

• fact: a binary heap with n elements has the height of $\lceil \log n \rceil$ (why?)
binary heap insertion

• put new value x at end of array, extending its size by 1
• value x is now viewed as being at the bottom of the tree
• if x violates heap property (if larger than parent), swap with parent
• repeat until no violation
• time is proportional to height of tree, which is $O(lg n)$

• text handles this differently, they insert $-\infty$ and then use heap-increase-key to the new value
pseudo-code for insert

```plaintext
insert(x):
  heapsize++
  A[heapsize]=x
  i = heapsize
  while i>1 and A[i]>A[parent(i)]
    swap A[i] and A[parent(i)]
    i = parent(i)
```

sometimes called “sift-up” or “bubble-up”
Binary Heap: Insert Operation

1. Viewed as a binary tree:
 - Left: 16, 11, 12, 4, 5, 6, 7, 8, 10, 9, 14
 - Right: 16, 11, 14, 8, 10, 9, 12

2. Viewed as an array:
 - Left: 1, 2, 3, 4, 5, 6, 7, 16, 11, 12, 8, 10, 9, 14
 - Right: 1, 2, 3, 4, 5, 6, 7, 16, 11, 14, 8, 10, 9, 12
heap extract-max (deletion)

- similar but element moves down
- idea: remove and return root (in location 1 of the tree)
- move rightmost element into that empty location ...
- ... and reduce the heapsize
- tree shape is maintained but root location may violate heap property
- note: rest of tree still has heap property
- swap node with larger (why) of it’s children
- repeat while heap property violated until leaf hit
- called “sift-down” or “bubble-down”
Max-Heapify(A, i)

// Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
// Output: A modified so that i roots a heap
// Running Time: $O(\log n)$ where $n = heap-size[A] - i$

1 $l = \text{Left}(i)$
2 $r = \text{Right}(i)$
3 if $l \leq A.\text{heap-size}$ and $A[l] > A[i]$
4 $\text{largest} = l$
5 else $\text{largest} = i$
6 if $r \leq A.\text{heap-size}$ and $A[r] > A[\text{largest}]$
7 $\text{largest} = r$
8 if $\text{largest} \neq i$
9 exchange $A[i]$ with $A[\text{largest}]$
10 $\text{Max-Heapify}(A, \text{largest})$
first attempt at sorting

1. for each element x, \textit{insert} x into a heap
 - time per insert $O(lg \ n)$, total $O(n \ lg \ n)$
 - this can be made much faster

2. while the heap is not empty, \textit{extract-max}
 - output is a sorted list (reversed)
 - each extract-max is $O(lg \ n)$, total $O(n \ lg \ n)$
 - cannot be made faster

BUILDHEAP uses deletion idea to get linear overall time
buildheap code

```
BUILD-MAX-HEAP(A)
   // Input: A: an (unsorted) array
   // Output: A modified to represent a heap.
   // Running Time: O(n) where n = length[A]
   1    heap-size[A] ← length[A]
   2    for i ← [length[A]/2] downto 1
   3        MAX-HEAPIFY(A, i)
```

correctness
• idea sort of clear, build heaps bottom up
• text uses loop invariant!!

time analysis
if tree has height H=\(\log n\)
• all nodes at level k take time \(H-k\) to sift down
• there are \(2^k\) nodes at level k
• total time is \(\sum_{0}^{H} 2^k (H - k)\)
• can show this is at most \(2n\)
grinding through the time bound

\[
\sum_{k=0}^{H} 2^k (H - k) = 2^H \sum_{k=0}^{H} \left(\frac{2^k}{2^H} \right) (H - k)
\]

\[
= n \cdot \sum_{k=0}^{H} \frac{1}{2^{H-k}} (H - k)
\]

\[
= n \cdot \sum_{i=0}^{H} \frac{i}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{i}{2^i} = 2 \cdot n
\]

\[2^H \approx 2^{\log_2 n} = n\]

why just 2?

• mentioned but not proved in appendix
• “fun” to derive
• can also take derivative of \(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}\)
now heapsort

HEAP-SORT(A)
 // Input: A: an (unsorted) array
 // Output: A modified to be sorted from smallest to largest
 // Running Time: $O(n \log n)$ where $n = \text{length}[A]$
1 BUILD-MAX-HEAP(A)
2 for $i = \text{length}[A]$ downto 2
3 exchange $A[1]$ and $A[i]$
4 heap-size[A] ← heap-size[A] − 1
5 MAX-HEAPIFY(A, 1)

step 1: $\Theta(n)$ time

steps 2-5: $\Theta(n \log n)$ time
other heap operation: increase-key

• an item can be increased in $O(\lg n)$ time
• after the increase, it would need to be sifted up as in the insert method
• the same applies to the decrease-key operation in a min heap
• this operation is a crucial step in Dijkstra’s method (shortest path) and Prim’s method (minimum spanning tree)
• it can be implemented in $O(1)$ amortized time using Fibonacci heaps
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
small digression: ordered trees

ordered tree:
- tree has designated root
- a node can have any number of children
- if a node has k children, they are ordered
 - 1^{st} child, 2^{nd} child, ..., k^{th} child
- good representation involves two pointers per node:
 - first-child and next-sibling
 - so the children of a node are in a linked list