CIS 313: Intermediate Data Structure

first slide
Programs = Algorithms + Data Structures
(by Niklaus Wirth)

• From the book
 • Algorithm: any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
 • Data structure: a way to store and organize data in order to facilitate access and modifications.
themes

• computational complexity, start to measure it
• simple data structures (mostly review)
• tree based structures
 • binary trees
 • binary heaps, binomial heaps
 • self adjusting trees: AVL, Red-Black
 • (2,4) trees, B-trees
• sorting, order statistics, voting
First algorithm

find the maximum number in an array

Input: a sequence of numbers $a_1, a_2, ..., a_n$
Output: the maximum number in the input sequence

Algorithm:

\[
\begin{align*}
max &= a_1 \\
\text{for } i = 2 \text{ to } n: & \\
\quad \text{if } a_i > max: & \\
\quad \quad max &= a_i \\
\text{return } max
\end{align*}
\]

How long does this take?
Maybe: n variable assignments, $n-1$ comparisons, $n-2$ increments, one return?
how do we talk about algorithm speed?

• use functions of the size of the input n (typically the number of input numbers/items in this class), i.e., $T(n)$

• apply asymptotic notation for these functions

• it ignores constants and only focuses on the highest-order term
 • why? machine independence, constants not important *asymptotically*
 • asymptotically = “in the long run or in the limit”

• see description and definitions in text (section 3.1, pp 43-52)

• O, Ω, Θ, o, ω
Time spent at 1,000,000 operations per second:

<table>
<thead>
<tr>
<th>input size</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>...</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>10^{-5} seconds</td>
<td>$2 \cdot 10^{-5}$ seconds</td>
<td>$3 \cdot 10^{-5}$ seconds</td>
<td>$4 \cdot 10^{-5}$ seconds</td>
<td>$5 \cdot 10^{-5}$ seconds</td>
<td>$6 \cdot 10^{-5}$ seconds</td>
<td>10^{-4} seconds</td>
<td></td>
</tr>
<tr>
<td>n^2</td>
<td>10^{-4} seconds</td>
<td>$4 \cdot 10^{-4}$ seconds</td>
<td>$9 \cdot 10^{-4}$ seconds</td>
<td>$1.6 \cdot 10^{-3}$ seconds</td>
<td>$2.5 \cdot 10^{-3}$ seconds</td>
<td>$3.6 \cdot 10^{-3}$ seconds</td>
<td>$.01$ second</td>
<td></td>
</tr>
<tr>
<td>n^3</td>
<td>10^{-3} seconds</td>
<td>$8 \cdot 10^{-3}$ seconds</td>
<td>$2.7 \cdot 10^{-3}$ seconds</td>
<td>$6.4 \cdot 10^{-2}$ seconds</td>
<td>$.125$ second</td>
<td>$.216$ second</td>
<td>1 second</td>
<td></td>
</tr>
<tr>
<td>n^{10}</td>
<td>2.7 hours</td>
<td>118 days</td>
<td>18 years</td>
<td>333 years</td>
<td>$3,103$ years</td>
<td>$19,213$ years</td>
<td>$31,775$ centuries</td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>10^{-3} seconds</td>
<td>1 second</td>
<td>17 minutes</td>
<td>12 days</td>
<td>35.7 years</td>
<td>$36,634$ years</td>
<td>$4 \cdot 10^{14}$ centuries</td>
<td></td>
</tr>
<tr>
<td>3^n</td>
<td>$.06$ second</td>
<td>58 minutes</td>
<td>6.5 years</td>
<td>3863 centuries</td>
<td>$2 \cdot 10^8$ centuries</td>
<td>$1.3 \cdot 10^{13}$ centuries</td>
<td>$1.6 \cdot 10^{32}$ centuries</td>
<td></td>
</tr>
<tr>
<td>$n!$</td>
<td>3.6 seconds</td>
<td>773 centuries</td>
<td>$8 \cdot 10^{16}$ centuries</td>
<td>$2.6 \cdot 10^{22}$ centuries</td>
<td>$9.7 \cdot 10^{48}$ centuries</td>
<td>$2.6 \cdot 10^{66}$ centuries</td>
<td>$3 \cdot 10^{142}$ centuries</td>
<td></td>
</tr>
<tr>
<td>2^{2^n}</td>
<td>$>10^{292}$ centuries</td>
<td>$>10^{315637}$ centuries</td>
<td>ouch!</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
big-Oh formally

\[f(n) = O(g(n)) \text{ if and only if (iff)} \]
\[\exists c > 0 \exists N \forall n \geq N \quad 0 \leq f(n) \leq c \cdot g(n) \]

- \(c \) is the dropped constant
- \(N \) is the crossover point so that ...
- ... if \(n \) is big enough \(f \) is bounded above by \(c \cdot g \)
- the growth rate of \(g \) bounds the growth rate of \(f \) from above

example: let \(f(n) = 3n^3 + 5n^2 + n + 17 \)

some true statements:
- \(f(n) = O(n^3) \)
- \(f(n) = O(n^4) \)
- \(f(n) = O(17n^3) \)
- \(f(n) = 3n^3 + O(n^2) \)
Big Omega and Theta

\[f(n) = \Omega(g(n)) \text{ iff } \exists c > 0 \exists N \forall n \geq N \quad f(n) \geq c \cdot g(n) \geq 0 \]

thus, the growth rate of \(g \) is less than or equal to the growth rate of \(f \) (ignoring the constant)

\[f(n) = \Theta(g(n)) \text{ iff } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \]

- here \(f \) and \(g \) have the same growth rate
- sort of like saying \(A \leq B \) and \(A \geq B \) implies that \(A = B \)

now we can say \(f(n) = 3n^3 + 5n^2 + n + 17 \)

- \(f(n) = \Omega(n^3) \)
- \(f(n) = \Omega(n^2) \)
- \(f(n) = \Theta(n^3) \)
- \(f(n) = 3 \cdot n^3 + \Theta(n^2) \)
The graphs illustrate the asymptotic notations:

1. \(f(n) = \Theta(g(n)) \) with \(f(n) \) and \(c_2g(n) \) crossing at \(n_0 \).
2. \(f(n) = O(g(n)) \) with \(f(n) \) and \(cg(n) \) crossing at \(n_0 \).
3. \(f(n) = \Omega(g(n)) \) with \(f(n) \) and \(c_1g(n) \) crossing at \(n_0 \).
little-oh and little-omega

\[f(n) = o(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]

or

\[\forall c > 0 \exists N \forall n \geq N \; 0 \leq f(n) \leq c \cdot g(n) \]

in other words, the growth rate of \(f \) is strictly less than that of \(g \)

\[f(n) = \omega(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \]

or

\[\forall c > 0 \exists N \forall n \geq N \; f(n) \geq c \cdot g(n) \geq 0 \]

the growth rate of \(f \) is strictly greater than that of \(g \)

eXamples:

- \(f(n) = o(n^4) \)
- \(f(n) = \omega(n^2) \)
- \(f(n) = 3 \cdot n^3 + o(n^3) \)
- \(\frac{1}{n} = o(1) \)
some properties

-Transitivity:
 \[f(n) = \alpha(g(n)) \text{ and } g(n) = \alpha(h(n)) \implies f(n) = \alpha(h(n)) \ (\alpha \in \{O, \Omega, \Theta, o, \omega\}) \]

- Reflexivity:
 \[f(n) = \alpha(f(n)) \ (\alpha \in \{O, \Omega, \Theta\}) \]

-Symmetry:
 \[f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n)) \]

- Transpose Symmetry:
 \[f(n) = O(g(n)) \iff g(n) = \Omega(f(n)) \]
 \[f(n) = o(g(n)) \iff g(n) = \omega(f(n)) \]
common functions

• n^k, where k is a constant (polynomial)
• 2^n, 3^n, c^n (exponential)
• $\log_2 n$, $\log_c n$, $\ln n$ (logarithmic – usually $\log n$ implies base 2)
 • fact: $\log_2 n = O(\log_c n)$ (why?)
• $O(n \log n)$ (also poly, but very common)
• $n!$ (factorial)
• $2^{(\log n)^2}$ (super-poly, sub-exponential) (ok, not so common)
other functions

• factorials: \(n! = n \cdot (n - 1) \cdot (n - 2) \cdots 3 \cdot 2 \cdot 1 \)

• Stirling’s Approximation: \(n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta\left(\frac{1}{n}\right)) \)

• importantly \(\log n! = \Theta(n \cdot \log n) \)

• binomial coefficients

• Fibonacci sequence: \(F_0 = 0, F_1 = 1, F_{k+2} = F_{k+1} + F_k \)

• (Fibonacci used for AVL trees)
more examples

10 \log n + \log \log n \quad \text{is} \quad O(\log n)? \ O(n)? \ O(n^{0.0000001})? \ \Omega(\log n)? \ O((\log n)^{0.5})? \ \Omega((\log n)^{0.5})

2^{3^{2000}} \quad \text{is} \quad O(1)? \ \Omega(1)? \ 2^{3^{2000}} \ n \quad \text{is} \quad O(n)?

\frac{2}{n} \quad \text{is} \quad O(1/n)? \ O(1/\sqrt{n})? \ O(1/n^{1.7})? \ O(1)?

f(n) = \begin{cases}
0.1 \ n \ & \text{if} \ n \ \text{is odd} \\
3 \ n^2 \ & \text{if} \ n \ \text{is even}
\end{cases} \quad \text{is} \quad O(n)? \ O(n^{1.5})? \ O(n^2)? \ \Omega(n)? \ \Omega(n^{1.5}) \ \Omega(n^2)
Exercise

Order the following by growth rate (big-Theta).

\(n \)
\(n^2 - 4n \)
\(n^2 + n \log^3 n \)
\(n^{5/2} + n^{3/2} + 100 \log n \)
\(n + \log n \)
\((\log n)(n + n^2) \)
\(n^2 \log n + n \log n^3 \)
\(2^{\log n} \)
\(2^n \log n \)
\(1/n \)
\(1/(n \log n) \)
\(n^{1/2} + n \log n \)
\(n + n \log n \)
\((\log n)^3 + (\log n)^2 + \log n \)
\(n^2 \log n + n \log n^3 \)
\(2^n \log n \)
reading for previous material

• chapter 3
• appendix A.1
loop invariants

• “simple” method to prove correctness of a loop structure
• follows induction
• three phases: initialization (base case),
 invariance maintenance (induction), and
 termination

• look at pp 18-20 of text for more discussion
• while there, look at pp 20-22 for description of pseudo-code
general structure of argument

code:

<init>
while γ
 do Ł

invariant: α
a true/false statement about the variables of the code

initialization: show that α is true after the <init> phase of the code has been executed

maintenance: show that if \(α \land γ \) is true, then α will be true after one execution of the loop body Ł

termination: the loop finishes when γ is false, so argue that \(\neg γ \land α \) is the desired outcome
example

input: integer n>0
output: n(n+1)/2

--initialization
int s=0
int k=0

--loop
while k < n+1 do
 s = s+k
 k = k+1

--end
return s

\(\gamma: k < n+1 \)
\(\alpha: \)
- \(0 \leq k \leq n + 1 \)
- \(s = k(k-1)/2 \)
example

input: integer n > 0
output: integer k, array b of k bits

-- initialization
int k = 0
int t = n
array b = [] of bit

-- loop
while t > 0 do
 b[k] = (t mod 2)
 k = k + 1
 t = t div 2

-- end
return k, b

γ: t > 0

α:
• t ≥ 0
• Let \(m = \sum_{i=0}^{k-1} b[i] \cdot 2^i \) be the number represented by b in base 2. Then \(n = 2^k \cdot t + m \)

notice:
• initialization is easy
• termination also easy
• see handout (posted on class site) for full discussion
example

Compute the n-th Fibonacci number