CIS 313: Intermediate Data Structure

first slide
Programs = Algorithms + Data Structures
(by Niklaus Wirth)

• From the book
 • Algorithm: any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
 • Data structure: a way to store and organize data in order to facilitate access and modifications.
themes

• computational complexity, start to measure it
• simple data structures (mostly review)
• tree based structures
 • binary trees
 • binary heaps, binomial heaps
 • self adjusting trees: AVL, Red-Black
 • (2,4) trees, B-trees
• sorting, order statistics, voting
First algorithm

find the maximum number in an array

Input: a sequence of numbers \(a_1, a_2, ..., a_n\)
Output: the maximum number in the input sequence

Algorithm:

\[
\text{max} = a_1 \\
\text{for } i = 2 \text{ to } n: \\
\quad \text{if } a_i > \text{max}: \\
\quad\quad \text{max} = a_i \\
\text{return } \text{max}
\]

How long does this take?
Maybe: \(n\) variable assignments, \(n-1\) comparisons, \(n-2\) increments, one return?
how do we talk about algorithm speed?

• use functions of the size of the input \(n \) (typically the number of input numbers/items in this class), i.e., \(T(n) \)

• apply asymptotic notation for these functions

• it ignores constants and only focuses on the highest-order term
 • why? machine independence, constants not important *asymptotically*
 • asymptotically = “in the long run or in the limit”

• see description and definitions in text (section 3.1, pp 43-52)

• \(O, \Omega, \Theta, o, \omega \)
Time spent at 1,000,000 operations per second:

<table>
<thead>
<tr>
<th>algorithm speed</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>...</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(10^{-5}) seconds</td>
<td>(2 \cdot 10^{-5}) seconds</td>
<td>(3 \cdot 10^{-5}) seconds</td>
<td>(4 \cdot 10^{-5}) seconds</td>
<td>(5 \cdot 10^{-5}) seconds</td>
<td>(6 \cdot 10^{-5}) seconds</td>
<td>(10^{-4}) seconds</td>
<td></td>
</tr>
<tr>
<td>(n^2)</td>
<td>(10^{-4}) seconds</td>
<td>(4 \cdot 10^{-4}) seconds</td>
<td>(9 \cdot 10^{-4}) seconds</td>
<td>(1.6 \cdot 10^{-3}) seconds</td>
<td>(2.5 \cdot 10^{-3}) seconds</td>
<td>(3.6 \cdot 10^{-3}) seconds</td>
<td>.01 second</td>
<td></td>
</tr>
<tr>
<td>(n^3)</td>
<td>(10^{-3}) seconds</td>
<td>(8 \cdot 10^{-3}) seconds</td>
<td>(2.7 \cdot 10^{-3}) seconds</td>
<td>(6.4 \cdot 10^{-2}) seconds</td>
<td>.125 second</td>
<td>.216 second</td>
<td>1 second</td>
<td></td>
</tr>
<tr>
<td>(n^{10})</td>
<td>2.7 hours</td>
<td>118 days</td>
<td>18 years</td>
<td>333 years</td>
<td>3,103 years</td>
<td>19,213 years</td>
<td>31,775 centuries</td>
<td></td>
</tr>
<tr>
<td>(2^n)</td>
<td>(10^{-3}) seconds</td>
<td>1 second</td>
<td>17 minutes</td>
<td>12 days</td>
<td>35.7 years</td>
<td>36,634 years</td>
<td>4 (\cdot 10^{14}) centuries</td>
<td></td>
</tr>
<tr>
<td>(3^n)</td>
<td>.06 second</td>
<td>58 minutes</td>
<td>6.5 years</td>
<td>3863 centuries</td>
<td>2 (\cdot 10^8) centuries</td>
<td>1.3 (\cdot 10^{13}) centuries</td>
<td>1.6 (\cdot 10^{32}) centuries</td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>3.6 seconds</td>
<td>773 centuries</td>
<td>8 (\cdot 10^{16}) centuries</td>
<td>2.6 (\cdot 10^{32}) centuries</td>
<td>9.7 (\cdot 10^{48}) centuries</td>
<td>2.6 (\cdot 10^{66}) centuries</td>
<td>3 (\cdot 10^{142}) centuries</td>
<td></td>
</tr>
<tr>
<td>(2^{2^n})</td>
<td>>10(^{292}) centuries</td>
<td>>10(^{315637}) centuries</td>
<td>ouch!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

input size
big-Oh formally

\[f(n) = O(g(n)) \text{ if and only if (iff)} \]
\[\exists c > 0 \exists N \forall n \geq N \quad 0 \leq f(n) \leq c \cdot g(n) \]

- \(c \) is the dropped constant
- \(N \) is the crossover point so that ...
- ... if \(n \) is big enough \(f \) is bounded above by \(c \cdot g \)
- the growth rate of \(g \) bounds the growth rate of \(f \) from above

example: let \(f(n) = 3n^3 + 5n^2 + n + 17 \)

some true statements:
- \(f(n) = O(n^3) \)
- \(f(n) = O(n^4) \)
- \(f(n) = O(17 \cdot n^3) \)
- \(f(n) = 3n^3 + O(n^2) \)
Big Omega and Theta

\[f(n) = \Omega(g(n)) \iff \exists c > 0 \exists N \forall n \geq N \; f(n) \geq c \cdot g(n) \geq 0 \]

thus, the growth rate of \(g \) is less than or equal to the growth rate of \(f \) (ignoring the constant)

\[f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \]

- here \(f \) and \(g \) have the same growth rate
- sort of like saying \(A \leq B \) and \(A \geq B \) implies that \(A = B \)

now we can say \(f(n) = 3n^3 + 5n^2 + n + 17 \)
- \(f(n) = \Omega(n^3) \)
- \(f(n) = \Omega(n^2) \)
- \(f(n) = \Theta(n^3) \)
- \(f(n) = 3 \cdot n^3 + \Theta(n^2) \)
$f(n) = \Theta(g(n))$

$f(n) = O(g(n))$

$f(n) = \Omega(g(n))$
little-oh and little-omega

\[f(n) = o(g(n)) \iff \lim_{{n \to \infty}} \frac{f(n)}{g(n)} = 0 \]

or

\[\forall c > 0 \exists N \forall n \geq N \ 0 \leq f(n) \leq c \cdot g(n) \]

in other words, the growth rate of \(f \) is strictly less than that of \(g \)

\[f(n) = \omega(g(n)) \iff \lim_{{n \to \infty}} \frac{f(n)}{g(n)} = \infty \]

or

\[\forall c > 0 \exists N \forall n \geq N \ f(n) \geq c \cdot g(n) \geq 0 \]

the growth rate of \(f \) is strictly greater than that of \(g \)

examples:

• \(f(n) = o(n^4) \)
• \(f(n) = \omega(n^2) \)
• \(f(n) = 3 \cdot n^3 + o(n^3) \)
• \(\frac{1}{n} = o(1) \)
- Transitivity:
 \(f(n) = \alpha(g(n)) \) and \(g(n) = \alpha(h(n)) \) imply \(f(n) = \alpha(h(n)) \) \((\alpha \in \{O, \Omega, \Theta, \omega\}) \)

- Reflexivity:
 \(f(n) = \alpha(f(n)) \) \((\alpha \in \{O, \Omega, \Theta\}) \)

- Symmetry:
 \(f(n) = \Theta(g(n)) \) iff \(g(n) = \Theta(f(n)) \)

- Transpose Symmetry:
 \(f(n) = O(g(n)) \) iff \(g(n) = \Omega(f(n)) \)
 \(f(n) = o(g(n)) \) iff \(g(n) = \omega(f(n)) \)
common functions

• \(n^k\), where \(k\) is a constant (polynomial)
• \(2^n, 3^n, c^n\) (exponential)
• \(\log_2 n, \log_c n, \ln n\) (logarithmic – usually \(\log\) \(n\) implies base 2)
 • fact: \(\log_2 n = O(\log_c n)\) (why?)
• \(O(n \log n)\) (also poly, but very common)
• \(n!\) (factorial)
• \(2^{(\log n)^2}\) (super-poly, sub-exponential) (ok, not so common)
other functions

- factorials: $n! = n \cdot (n - 1) \cdot (n - 2) \cdots 3 \cdot 2 \cdot 1$
- Stirling’s Approximation: $n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta\left(\frac{1}{n}\right))$
- importantly $\log n! = \Theta(n \cdot \log n)$
- binomial coefficients
- Fibonacci sequence: $F_0 = 0, F_1 = 1, F_{k+2} = F_{k+1} + F_k$
- (Fibonacci used for AVL trees)
more examples

10 \log n + \log \log n \quad \text{is} \quad O(\log n)? \quad O(n)? \quad O(n^{0.0000001})? \quad \Omega(\log n)? \quad O((\log n)^{0.5})? \quad \Omega((\log n)^{0.5})

2^{3^{2000}} \quad \text{is} \quad O(1)? \quad \Omega(1)? \quad 2^{3^{2000}} n \quad \text{is} \quad O(n)?

2/n \quad \text{is} \quad O(1/n)? \quad O(1/\sqrt{n})? \quad O(1/n^{1.7})? \quad O(1)?

f(n) = \begin{cases}
0.1 n \quad \text{if} \quad n \text{ is odd} \\
3 n^2 \quad \text{if} \quad n \text{ is even}
\end{cases} \quad \text{is} \quad O(n)? \quad O(n^{1.5})? \quad O(n^2)? \quad \Omega(n)? \quad \Omega(n^{1.5}) \quad \Omega(n^2)
reading for previous material

• chapter 3
• appendix A.1
loop invariants

• “simple” method to prove correctness of a loop structure
• follows induction
• three phases: initialization (base case),
• invariance maintenance (induction), and
• termination

• look at pp 18-20 of text for more discussion
• while there, look at pp 20-22 for description of pseudo-code
general structure of argument

code:

<init>
while \(\gamma \)
do \(\mathcal{L} \)

invariant: \(\alpha \)
a true/false statement about the variables of the code

- **initialization**: show that \(\alpha \) is true after the <init> phase of the code has been executed
- **maintenance**: show that if \(\alpha \land \gamma \) is true, then \(\alpha \) will be true after one execution of the loop body \(\mathcal{L} \)
- **termination**: the loop finishes when \(\gamma \) is false, so argue that \(\neg \gamma \land \alpha \) is the desired outcome
example

input: integer n>0
output: n(n+1)/2

--initialization
int s=0
int k=0

--loop
while k < n+1 do
 s = s+k
 k = k+1

--end
return s

\[\gamma : k < n+1 \]

\[\alpha : \]
\[\bullet \ 0 \leq k \leq n + 1 \]
\[\bullet \ s = k(k-1)/2 \]
input: integer n>0
output: integer k, array b of k bits

--initialization
int k=0
int t=n
array b=[] of bit

--loop
while t>0 do
 b[k] = (t mod 2)
 k = k+1
 t = t div 2
--end
return k, b

\[\gamma: \text{t}>0 \]

\[\alpha: \]
\begin{itemize}
 \item \(t \geq 0 \)
 \item Let \(m = \sum_{i=0}^{k-1} b[i] \cdot 2^i \) be the number represented by \(b \) in base 2. Then \(n = 2^k \cdot t + m \)
\end{itemize}

notice:
\begin{itemize}
 \item initialization is easy
 \item termination also easy
 \item see handout (posted on class site) for full discussion
\end{itemize}
example

Compute the n-th Fibonacci number