Recurrence Relations for Yuckdonalds Problem

exercise 6.3 from DPV

Yuckdonalds is considering opening a series of restaurants along Quaint Valley Highway (QVH). The n possible locations are along a straight line, and the distances of these locations from the start of QVH are, in miles and in increasing order, m_1, m_2, \ldots, m_n. The constraints are as follows:

- At each location, Yuckdonalds may open at most one restaurant. The expected profit from opening a restaurant at location i is p_i, where $p_i > 0$ and $i = 1, 2, \ldots, n$.
- Any two restaurants should be at least k miles apart, where k is a positive integer.

Give an efficient algorithm to compute the maximum expected total profit subject to the given constraints.

comment: In both versions below we add a restaurant location at milepost $m_0 = -\infty$ with profit $p_0 = 0$.

version 1

subproblem: $RP(i)$ is the maximum profit available by placing restaurants at locations chosen from mileposts m_0, m_1, \ldots, m_i subject to the restrictions

- each restaurant is at least k miles from the nearest neighbor
- **(important)** a restaurant is placed at location i

recurrence:

$$RP(i) = \begin{cases}
0 & \text{if } i = 0 \\
p_i + \max\{ RP(j) \mid 0 \leq j < i \text{ and } m_i - m_j \geq k \} & \text{otherwise.}
\end{cases}$$

desired output: $\max_{1 \leq i \leq n} RP(i)$

implicit time: $O(n^2)$

version 2

subproblem: $RP(i)$ is the maximum profit available by placing restaurants at locations chosen from mileposts m_0, m_1, \ldots, m_i subject to the **one** restriction
• each restaurant is at least k miles from the nearest neighbor

define: Let $\pi(i)$ be the largest $j < i$ such that $m_i - m_j \geq k$ (the closest previous location before i that is at least k miles away). **Note:** all the $\pi(i)$ values could be precomputed in $O(n)$ time. (I think!)

recurrence:

$$RP(i) = \begin{cases}
0 & \text{if } i = 0 \\
\max \{ RP(i-1), p_i + RP(\pi(i)) \} & \text{otherwise.}
\end{cases}$$

desired output: $RP(n)$

implicit time: $O(n)$

iterative code for version 2

The following pseudo-code will compute RP in a bottom-up (iterative) manner, storing the values in an array. It will not pre-compute π, but will do so on the fly. The time bound will be $O(n^2)$ this way.

input is provided by
- int k (spacing)
- int arrays $p[0..n]$ (profits), and
- $m[0..n]$ (mileposts)

we use arrays
- $RP[0..n]$ (max-profit so far) and
- $PI[1..n]$ (closest possible previous loc)

$RP[0]=0$

for $i=1$ to n

\[j = i-1 \]

while $m[i]-m[j]<k$ do $j=j-1$

$PI[i]=j$

if ($RP[i-1] \geq RP[PI[i]]+p[i]$)

then $RP[i] = RP[i-1]$

else $RP[i] = RP[PI[i]]+p[i]$

return $RP[n]$

modified code for version 2

To determine the locations chosen, we include a boolean array USE to save the choices.
RP[0]=0

for i=1 to n
 j=i-1
 while m[i]-m[j]<k do j=j-1
 PI[i]=j
 if (RP[i-1] >= RP[PI[i]]+p[i])
 then
 RP[i] = RP[i-1]
 USE[i] = false
 else
 RP[i] = RP[PI[i]]+p[i]
 USE[i] = true

i=n
while i>0
 if USE[i]
 then
 report 'place a restaurant at location i at milepost m[i]'
 i = PI[i]
 else
 i = i-1