Reductions
CIS 621 and the ex-622

There are many reductions - we will mention three which are polynomial time, and one that is below polynomial time.

Definition 1 A set A polynomial time Turing reduces to a set B, denoted $A \leq_{PT}^P B$, if $A \in P^B$. That is, if A can be computed in polynomial time with an oracle for B.

Definition 2 A set A is polynomial time truth-table reducible to B, denoted $A \leq_{Ptt}^P B$ if, on input x, the following can be computed in time polynomial in $|x|$:

- strings y_1, y_2, \ldots, y_k
- a predicate R_x with arity k

with the property that $x \in A$ iff $R_x(y_1 \in B, y_2 \in B, \ldots, y_k \in B)$.

Definition 3 A set A is polynomial time many-one reducible to B, denoted $A \leq_{Pm}^P B$, if there is a polynomial time transducer f such that for all x,

$$x \in A \iff f(x) \in B.$$

The first is sometimes called a “Cook reduction” and the last a “Karp reduction”. This is because the original paper by Cook showing that SAT is NP-complete used \leq_{PT}^P, while a subsequent influential paper by Karp used \leq_{Pm}^P. The latter is the most common.

The following is quite easy to see.

Fact If $A \leq_{Pm}^P B$, then $A \leq_{Ptt}^P B$. If $A \leq_{Ptt}^P B$, then $A \leq_{PT}^P B$.

Definition A class C is closed under a reduction \leq if

$$A \leq B \land B \in C \implies A \in C.$$

Closure Theorem NP is closed under \leq_{Pm}^P. P and $PSPACE$ are closed under \leq_{Pm}^P, \leq_{Ptt}^P, and \leq_{PT}^P.

proof: exercise?

Transitivity Theorem If $A \leq_{Pm}^P B$ and $B \leq_{Pm}^P C$, then $A \leq_{Pm}^P C$. The reductions \leq_{Ptt}^P and \leq_{PT}^P are also transitive.

proof: Let $A \leq_{Pm}^P B$ and $B \leq_{Pm}^P C$. By the definition, there are transducers f and g, computable in time p_f and p_g respectively, such that $x \in A \iff f(x) \in B$ and $y \in B \iff g(y) \in C$. Clearly, then

$$x \in A \iff g(f(x)) \in C.$$
Note that $|f(x)| \leq pf(|x|)$, so the time to compute $g(f(x))$ is bounded by $pf(|x|) + pg(pf(|x|))$. □

Definition Given a reduction \leq and class C, a set B is \leq-hard for C if, for all $A \in C$, $A \leq B$. The set B is \leq-complete for C if B is \leq-hard for C and $B \in C$.

From this point on, let us only refer to reductions that are transitive and to classes that are closed under the reduction.

Fact If B is \leq-hard for C and $B \leq C$, then C is \leq-hard for C.

Fact If B is \leq-hard for C and $B \in D$, where D is closed under \leq, then $C \subseteq D$.

The first fact is useful in showing complete sets, and the second is why complete sets are interesting. Especially interesting is a consequence of the second fact:

Fact If B is \leq^P_m-complete for NP and $B \in P$, then $P = NP$. If B is \leq^P_m-complete for NP and $B \in coNP$, then $NP = coNP$.

It is not at all hard to create an NP-complete set. (However, it is very hard to show a natural complete set.) Let M_1, M_2, \ldots be an enumeration of the NDTMs. It is easy to see (exercise) that the following set is \leq^P_m-complete for NP

$$\{ \langle i, x, 0^m \rangle | M_i \text{ accepts } x \text{ within } m \text{ steps} \}.$$

Notice that the reductions above do not discriminate well within P:

Fact Let B be any set. Then B is \leq^P_T complete for P. If $B \neq \{0,1\}^*$ and $B \neq \emptyset$, then B is \leq^P_m complete for P.

Therefore, we need a reduction more appropriate to P - the standard one being the “log-space many-one” reduction, denoted \leq^{log}_m.

Definition $A \leq^{log}_m B$ if there is a function $f : \Sigma_A^* \rightarrow \Sigma_B^*$ such that

1. $\forall x \in \Sigma_A^*, x \in A \iff f(x) \in B$.

2. f can be computed in log-space (by a machine with a read-only input tape and write-only output tape, not subject to the space bound).

exercise Show that \leq^{log}_m is transitive.

Later, we will see a complete problem for P:

Theorem The circuit evaluation problem is \leq^{log}_m-complete for P.

2