For the problems below, just give a description of the subproblem and a recurrence relation for the optimal solution value. There is no need to write any code (and none is desired).

1. chapter 6, exercise 6, pp 317-318

2. chapter 6, exercise 19, p 329

3. (look at exercise 6.26, p 197, from DPV) Consider the following version of the sequence alignment problem. We have strings $X, Y \in \Sigma^*$, and the closeness of the alignment between $X = X_1X_2 \ldots X_n$ and $Y = Y_1Y_2 \ldots Y_m$ is determined by a scoring matrix δ of size $(|\Sigma| + 1) \times (|\Sigma| + 1)$, where the extra rows and columns are to accommodate gaps. We define a subproblem $AS(i,j)$ (“alignment score”) as the score of the highest-scoring alignment of $X = X_1X_2 \ldots X_i$ and $Y = Y_1Y_2 \ldots Y_j$.

(a) Give a recurrence for $AS(i,j)$.

(b) What values assigned to δ describe the LONGEST COMMON SUBSEQUENCE problem?

(c) What values assigned to δ describe the EDIT DISTANCE problem (from the Dasgupta et al text, section 6.3, p 174)? (Hint: use some negative numbers.)

4. (exercise 6.6, DPV) We define a multiplication operation table on three symbols a, b, c according to something like the table below, so that $ab = b$, $ca = a$, and so on. The goal is to determine whether a string of symbols, $s_1s_2 \cdots s_n$ ($s_i \in \{a, b, c\}$) can be parenthesized in such a way so that their multiplication together equals a. Note that the operation is neither associative nor commutative (that is, it is possible that $ab \neq ba$ and $(ab)c \neq a(bc)$).

Table 1: multiplication table for a, b, c

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

For example, if the input string is b_bb_ac then the answer should be true since $((b(bb))(ba))c = a$. Hint: define a subproblem $P[i,j,t]$, where $1 \leq i \leq j \leq n$ and $t \in \{a, b, c\}$. $P[i,j,t]$ will be true if it is possible to parenthesize $s_is_{i+1} \cdots s_j$ in such a way that the multiplication in that order equals the symbol t, and false otherwise.

5. [extra credit] The “Bone’s Battery” problem, linked to from class page. Remember - just subproblem, recurrence, no code.
Note: take a look at the following problem (from DPV). This will form the basis of the programming assignment - a sample recurrence will be provided.

(exercise 6.23, p 196, from DPV) A mission-critical production system has n stages that have to be performed sequentially; stage i is performed by machine M_i. Each machine M_i has a probability r_i of functioning reliably and a probability $1 - r_i$ of failing (and the failures are independent). Therefore, if we implement each stage with a single machine, the probability that the whole system works is $r_1 \cdot r_2 \cdots r_n$. To improve this probability we add redundancy by having m_i copies of the machine M_i that performs stage i. The probability that all m_i copies fail simultaneously is only $(1 - r_i)^{m_i}$, so the probability that stage i is completed correctly is $1 - (1 - r_i)^{m_i}$ and the probability that the whole system works is $\Pi_{i=1}^{n} [1 - (1 - r_i)^{m_i}]$. Each machine M_i has a cost c_i, and there is a total budget B to buy machines. (Assume that B and the c_i are positive integers.)

Given the probabilities r_1, r_2, \ldots, r_n, the costs c_1, c_2, \ldots, c_n, and the budget B, find the maximum reliability that can be achieved within budget B.
