Gale-Shapley
example

• **n hospitals, n students**
• one student per hospital
• each hospital ranks all students
• each student ranks all hospitals
unstable

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>Xavier</td>
<td>Yolanda</td>
<td>Zeus</td>
</tr>
<tr>
<td>Boston</td>
<td>Yolanda</td>
<td>Xavier</td>
<td>Zeus</td>
</tr>
<tr>
<td>Chicago</td>
<td>Xavier</td>
<td>Yolanda</td>
<td>Zeus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Boston</td>
<td>Atlanta</td>
<td>Chicago</td>
</tr>
<tr>
<td>Yolanda</td>
<td>Atlanta</td>
<td>Boston</td>
<td>Chicago</td>
</tr>
<tr>
<td>Zeus</td>
<td>Atlanta</td>
<td>Boston</td>
<td>Chicago</td>
</tr>
</tbody>
</table>

A–Y is an unstable pair for matching $M = \{ A-Z, B-Y, C-X \}$
the algorithm:

Gale–Shapley *(preference lists for hospitals and students)*

Initialize M to empty matching.

While (some hospital h is unmatched and hasn’t proposed to every student)

$s \leftarrow$ first student on h’s list to whom h has not yet proposed.

If (s is unmatched)

Add h–s to matching M.

Else If (s prefers h to current partner h')

Replace h'–s with h–s in matching M.

Else

s rejects h.
steps

1. s remains matched from the first time they receive a proposal; the sequence of h they are matched to gets better over time
2. the sequence of s that an h proposes to gets worse over time
3. the GS algorithm terminates after at most n^2 iterations
4. if h is unmatched at some point in the execution, there is an s to which h has not yet proposed
5. the set M returned at termination is a perfect matching
6. the set M returned is a stable matching (pf on next page)
Claim. In Gale–Shapley matching M^*, there are no unstable pairs.

Pf. Consider any pair $h–s$ that is not in M^*.

- Case 1: h never proposed to s.
 \Rightarrow h prefers its Gale–Shapley partner s' to s.
 \Rightarrow $h–s$ is not unstable.

- Case 2: h proposed to s.
 \Rightarrow s rejected h (either right away or later)
 \Rightarrow s prefers Gale–Shapley partner h' to h.
 \Rightarrow $h–s$ is not unstable.

- In either case, the pair $h–s$ is not unstable. \blacksquare