CIS 313:
Intermediate Data Structure

sixth week of the term
red-black trees

1. every node is either red or black
2. the root is black
3. every leaf (null) is black
4. if a node is red, both of its children are black
5. for each node, all simple paths from the node to descendant leaves contain the same number of black nodes
red-black trees
red-black tree height

• (too) simple analysis:
 • the black-height is at most $\log_2 n$
 • the actual height is at most twice the black height
 • so total at most $2\log_2 n$
 • OK, text says at most $2\log_2 (n+1)$
turn a binary search tree into a red-black tree

```python
if n is root,
    n.color = black
    n.black-quota = height n / 2, rounded up.
else if n.parent is red,
    n.color = black
    n.black-quota = n.parent.black-quota.
else (n.parent is black)
    if n.min-height < n.parent.black-quota, then
        error "shortest path was too short"
    else if n.min-height = n.parent.black-quota then
        n.color = black
    else (n.min-height > n.parent.black-quota)
        n.color = red
    either way,
    n.black-quota = n.parent.black-quota - 1
```
red-black tree insertion

- to insert new key \(x \)
- as always, search to the bottom of the tree for where \(x \) would go
- put \(x \) there and color it red (to maintain black-height)
- this might cause a problem: two reds in a row
- if no such problem, then done
- if double-red problem, then fix using
 - color shifts or
 - rotation

example: insert 7
sample BST
RB-INSERT-FIXUP

- section 13.3 of text
- this deals with the double red case after an insertion
- let y be the current node, both it and its parent are red
- let z be the “uncle” of y: the sibling of y’s parent’s parent
- two cases:
 - z is red
 - color shift
 - then check again for double red, possibly continue
 - z is black
 - rotate
 - done
z is red

color shift

this swaps a black and red level, preserving black height along these paths, but may create another double-red at the new y
z is black

rotation (double)
done now
z is black (again, different case)

there are two other cases similar to these needing single and double left rotations
example insertions

after insertion of 1, 2, 3, 4, 5, 6 into empty RB tree

let’s continue with 7, 8, ...
insert 7

single left rotate
insert 8

1. Color shift
2. Single left rotate (at 2)
insert 9
insert 10
insert 10 (cont’d)

note: 4 as root gets colored black at the end
RB Deletion

- BST Deletion Revisited: delete z
 - If z has no children, then just remove it
 - If z has only one child, then splice out z
 - If z has two children, then:
 - Find its successor y
 - Splice out y
 - Replace z’s value with y’s value

-> so the physical node deleted is z in the first two cases and y in the third case
RB Deletion

• Delete z as in BST
• If z has two children, when replace z’s value with the successor’s value, keep z’s color (don’t change z’s color)
• Let y be the node being removed or spliced out in this procedure (y would be either z or successor of z, thus y has at most one child)
• If y is red, no violation of the red-black properties, done
• If y is black, some violations might arise and we need to restore the red-black properties
RB Deletion: \(y \) is black

- Let \(x \) be the child of \(y \) before it was spliced out
 So \(x \) is either nil (a leaf) or the only non-nil child of \(y \)
Restoring RB Properties

• The RB-DELETE-FIXUP routine in the text, applied to x
• If x is red, so easy, just change its color to black and done
• If x is black:
 • Transform the tree and move x up, until:
 • x points to a red node, or
 • x is the root
 • At each step:
 • need to consider 8 cases; four when x is a left child and four when x is a right child.
 • due to the symmetry, just consider the 4 cases when x is a left child here
 • REMEMBER: set the color of x to black in the end
Restoring RB Properties: x is black and is a left child

x’s sibling w is red:
Left rotate D, switch colors of B and D

x’s sibling w is black; both w’s children are black:
Move x up, change w’s color to red

x’s sibling w is black; w’s right child is black, left child is red:
Right rotate on C, switch colors of C and D

x’s sibling w is black; w’s right child is red:
Left rotate on D, switch colors of B and D, change E’s color to black

The nodes with c or c’ can be either red or black
example: delete 4

replace 4 with it’s successor 5, remove 5’s node (y), x is a nil node (child of 5) and it’s black
delete 4 (cont’d)

case 1: left rotate 8, switch colors of 6 and 8
delete 4 (cont’d)

- **Case 2:** Change color of 7 to red, move up x to 6.

- **Final Step:** Change color of x to black.

x is now red and we are done with the moving up of x.
delete 4 (done)

NEXT: delete 1 from this
y is 1 and x is the nil child of 1 (black)
deleting 1 from previous

case 2: change color of 3 to red and move up x to 2
delete 1 (cont’d)

case 2 again: change color of 8 to red, move x up to 5

done since x is at root
(we’ve reduced the black height of the tree)
remove 2

y is 2, x is child of y (3), x is red, so just need to change color of x (3) to black

NEXT: delete 3 from this
y is 3, x is the nil node (child of y)
x is black
removing 3 from previous

case 1: left rotate 8, switch colors of 5 and 8
remove 3 (cont’d)

motivated by a “transfer” in 2-3-4 tree

set up as case 4:

case 4: left rotate D (6), switch colors of 5 and 6, change color of 7 to black
Done!
remember: all cases come with mirror image

- here x is right child of parent
- the left child of w is red
- fix-up can be completed with a right rotation and color changes
- note that the blue nodes (B and C) can be either red or black
B-trees

• very important data structure in computer science
• database indexing, hard disk referencing, MongoDB, ...
• balanced, multi-way search tree
• many slight variations, we will use definition in CLRS text
• idea is that nodes are large and fit into a disk block (minimum amount of data that’s pulled off a hard drive)
• node size parameters (here called t) depend on disk speeds, block sizes, etc.
B-tree specifications

- fixed parameter t, called *minimum degree*
- nodes have between t-1 and 2t-1 keys
- so therefore they have between t and 2t children
- root is exception: it may have as few as 1 key (2 children)
- all null pointers have the same depth (distance from root)
- a 2-3-4 tree is a B-tree with minimum degree t=2
different texts: things to look for

• top-down versus bottom-up insertion
 • CLRS does top-down, split full nodes during search
 • unlike how it does RB trees
 • bottom-up more common in practice, less wasted space

• ties to left or right
 • no duplicates here
 • need to know for B+ trees, which have all keys at an additional “leaf level”

• left/right bias: if middle key not well defined (when splitting a node with even number of keys)
B-tree node format

• each node can have between t and $2t$ children
• a node might look like
 • $<P_0, K_1, P_1, K_2, P_2, \ldots, P_{q-2}, K_{q-1}, P_{q-1}>$
 • for $t \leq q \leq 2t$ (except for root $2 \leq q \leq 2t$)
• during a search, we split full nodes
• a node is full when it has $2t-1$ keys
node split (shown for t=3)

split a full node

becomes

promote c by inserting into parent
B-tree height

• theorem 18.1: if \(n \geq 1 \), then for any B-tree containing \(n \) keys of height \(h \) and minimum degree \(t \geq 2 \), \(h \leq \log_t \frac{n+1}{2} \).

• example: \(t=50 \) and \(n=100,000,000 \)
 • \(h \leq \log_{50} 50,000,000 \) \(\approx 4.53 \leq 5 \)

• suppose 20 records fit on a page

• without the index to find an item we’d need to search about half the \(100,000,000/20=5,000,000 \)

• with the index we need at most \(5+1=6 \) disk accesses (5 for the tree nodes and one for the page containing that key’s record)
exercise 18.2-1

insert into initially empty B-tree of min degree t=2 the key values F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

after the first 3 values:

\(<F, Q, S>\)

a search to place K causes a split:

\(<Q>\)

\(<F>\) \(<S>\)

\(<Q>\)

\(<F, K>\) \(<S>\)

after which K is placed:
insert into initially empty B-tree of min degree $t=2$ the key values

place C

search for L splits full node:

\[
\begin{align*}
\text{split} & : & <Q> \\
\text{insert} & : & <F, Q> \\
\end{align*}
\]
insert into initially empty B-tree of min degree $t=2$ the key values $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E$

place H, T, V

insert W

search

split

insert
insert into initially empty B-tree of min degree $t=2$ the key values $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E$

- **Insert M**: Form a new child node for M at the appropriate position in the tree.
- **Split**:
 - When splitting node $<F>$, new node $<C>$ is created.
 - When splitting node $<T>$, new node $<Q>$ is created.
- **Search**:
 - Searches for the key values in the tree.

The tree structure evolves as keys are inserted and split, maintaining the B-tree properties.
ETC....
aside: splay trees

• maintain balance kind of
• insertion, deletion, union take $O(lg\ n)$ amortized time
 • a series of m of these operations on n keys takes total time worst case $O(m*lg\ n)$
 • possible that one operation takes $O(n)$ time but cannot happen often
• NO balance information needs to be stored at node (balance factor, color)
• used in DNS servers sometimes
splay trees use rotations

- idea is that whenever a node is accessed, it is moved to the root by a series of rotations
 - LOTS OF ROTATIONS!
 - and slightly different ones
- if x is child of root, it is moved upwards with a single rotation
 - called a ZIG rotation
- if x has a (RL or LR) grandparent, it is moved up with a double rotation
 - called a ZIG-ZAG rotation
- if x has a (LL or RR) rotation, then moved up with a special rotation
 - ZIG-ZIG
- idea: zig-zigs and zig-zags tend towards rebalancing
zig-zig
zig-zag
example: find 7
zig-zig, and done