binary heap implementation of PQ

- most common implementation
- operations are $O(\log n)$
- uses a binary tree structure
- except that the tree is stored in an array with no pointers
- it is an implicit tree, children and parents inferred from location in array

- PQSort becomes heapsort
binary heap

• stored in array
• item located in position i
 • parent in location $\lceil i/2 \rceil$
 • left child in position $2i$
 • right child in position $2i + 1$
• tree is complete
 • all nodes have two children, except maybe parent of “last” one
• tree maintains heap property
 • value stored at location i is greater than or equal to values stored in both its children
• fact: a binary heap with n elements has the height of $\lceil \lg n \rceil$ (why?)
binary heap insertion

• put new value x at end of array, extending its size by 1
• value x is now viewed as being at the bottom of the tree
• if x violates heap property (if larger than parent), swap with parent
• repeat until no violation
• time is proportional to height of tree, which is $O(lg\ n)$

• text handles this differently, they insert $-\infty$ and then use heap-increase-key to the new value
pseudo-code for insert

```
insert(x):
    heapsize++
    A[heapsize]=x
    i = heapsize
    while i>1 and A[i]>A[parent(i)]
        swap A[i] and A[parent(i)]
        i = parent(i)
    sometimes called “sift-up” or “bubble-up”
```
Binary Heap: Insert Operation

Viewed as a binary tree:

- Left:
 1 (root)
 16
 2
 3
 11
 12
 4
 5
 6
 7
 8
 10
 9
- Right:
 1 (root)
 16
 2
 3
 12
 4
 5
 6
 7
 8
 10
 9

Viewed as an array:

- Left:
 1 2 3 4 5 6 7
 16 11 12 8 10 9 14
- Right:
 1 2 3 4 5 6 7
 16 11 14 8 10 9 12
heap extract-max (deletion)

• similar but element moves down
• idea: remove and return root (in location 1 of the tree)
• move rightmost element into that empty location ...
• ... and reduce the heapsize
• tree shape is maintained but root location may violate heap property
• note: rest of tree still has heap property
• swap node with larger (why) of it’s children
• repeat while heap property violated until leaf hit
• called “sift-down” or “bubble-down”
Max-Heapify(A, i)

// Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
// Output: A modified so that i roots a heap
// Running Time: O(log n) where n = heap-size[A] − i
1 l ← LEFT(i)
2 r ← RIGHT(i)
4 largest ← l
5 else largest ← i
7 largest ← r
8 if largest ≠ i
9 exchange A[i] and A[largest]
10 Max-Heapify(A, largest)
first attempt at sorting

1. for each element x, \textit{insert} x into a heap
 - time per insert $O(lg\ n)$, total $O(n\ lg\ n)$
 - this can be made much faster

2. while the heap is not empty, \textit{extract-max}
 - output is a sorted list (reversed)
 - each extract-max is $O(lg\ n)$, total $O(n\ lg\ n)$
 - cannot be made faster

BUILDHEAP uses deletion idea to get linear overall time
buildheap code

```
BUILD-MAX-HEAP(A)
   // Input: A: an (unsorted) array
   // Output: A modified to represent a heap.
   // Running Time: O(n) where n = length[A]
1    heap-size[A] ← length[A]
2    for i ← [length[A]/2] downto 1
3       MAX-HEAPIFY(A, i)
```

correctness
- idea sort of clear, build heaps bottom up
- text uses loop invariant!!

time analysis
if tree has height H=\lg n
- all nodes at level k take time H-k to sift down
- there are 2^k nodes at level k
- total time is \(\sum_{0}^{H} 2^k (H - k) \)
- can show this is at most 2n
grinding through the time bound

\[\sum_{k=0}^{H} 2^k (H - k) = 2^H \sum_{k=0}^{H} \frac{2^k}{2^H} (H - k)\]

\[= n \cdot \sum_{k=0}^{H} \frac{1}{2^{H-k}} (H - k)\]

\[= n \cdot \sum_{i=0}^{H} \frac{i}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{i}{2^i} = 2 \cdot n\]

2^H \approx 2^{\log_2 n} = n

why just 2?
• mentioned but not proved in appendix
• “fun” to derive
• can also take derivative of \(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}\)
Heapsort

Heap-Sort(A)

// Input: A: an (unsorted) array
// Output: A modified to be sorted from smallest to largest
// Running Time: O(n log n) where n = length[A]

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] and A[i]
4 heap-size[A] ← heap-size[A] – 1
5 Max-Heapify(A, 1)

step 1: \(\Theta(n)\) time

steps 2-5: \(\Theta(n \log n)\) time
other heap operation: increase-key

• an item can be increased in $O(lg \, n)$ time
• after the increase, it would need to be sifted up as in the insert method
• the same applies to the decrease-key operation in a min heap
• this operation is a crucial step in Dijkstra’s method (shortest path) and Prim’s method (minimum spanning tree)
• it can be implemented in $O(1)$ amortized time using Fibonacci heaps

• we will not cover Fibonacci heaps, but next we look at a similar and simpler structure: binomial heaps
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(\lg n)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(\lg n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(\lg n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(\lg n)$</td>
</tr>
</tbody>
</table>
union of binary heaps

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
<th>Binomial heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(lg \ n)$</td>
<td>$O(lg \ n)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
<td>$O(lg \ n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
<td>$O(lg \ n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
</tr>
</tbody>
</table>
small digression: ordered trees

ordered tree:
• tree has designated root
• a node can have any number of children
• if a node has k children, they are ordered
 • 1st child, 2nd child, …, kth child
• good representation involves two pointers per node:
 • first-child and next-sibling
 • so the children of a node are in a linked list
binomial trees

• a *binomial heap* will be a collection of binomial trees with the heap property
• so we need to define a *binomial tree* first
• a binomial tree is defined recursively:
 • a B_0 tree is a single node (height 0)
 • a B_k tree consist of a B_{k-1} tree whose root has another B_{k-1} tree as a child
• a B_k tree contains 2^k nodes
• the height of the tree is k
• the number of nodes on level j of a B_k tree is the binomial coefficient $\binom{k}{j}$
• the root has degree k, which is greater than the degree of any other node;
 moreover if the children of the root are numbered from left to right by $k - 1, k - 2, ..., 0$, then child i is the root of a subtree B_i
these trees will be represented using the first-child next sibling representation of ordered trees.

one node will have three points:

- one points to the parent of the node
- one points to its leftmost child
- one points to its sibling immediately on the right
binomial heap

• collection of binomial trees, satisfying:
 • each binomial tree satisfy the heap property (values of parents less or equal to values at the children)
 • there is at most one binomial tree whose root has a given degree
• min value could be at root of one of the trees
• if n nodes stored, then $\lg n$ trees used, corresponds to binary representation of n
• example: if $n=13$, need B_0, B_2, B_3 trees (containing 1, 4, 8 nodes)
• $\ldots n=13=(1101)_2$ in base 2
merge two B_k trees

- two B_k trees can be merged into a B_{k+1} tree
- look at the two roots...
- ...the root with larger value becomes child of root with smaller value
- easy since children of root given in linked list
- result is B_{k+1} tree
main operation: union of two binomial heaps

• two heaps of sizes \(n \) and \(m \) can be merged in time \(O(\log n + \log m) \)
• idea is simple:
 • for \(k=0, 1, 2, \ldots \)
 • scan through each heap’s tree list
 • if there are two \(B_k \) trees, merge them together into a \(B_{k+1} \) tree
 • (note 1: one of the \(B_k \) trees might be the result of an earlier merge)
 • (note 2: there might be three \(B_k \) trees, one each from the two heaps and one from an earlier merge – pick the two later trees – similar to a carry bit)
• operation parallels closely addition in binary
main operation: union of two binomial heaps
(a) \[\ldots \xrightarrow{x} B_k \xrightarrow{b} B_1 \xrightarrow{c} \ldots \xrightarrow{\text{prev}-x} \xrightarrow{\text{next}-x} \xrightarrow{\text{Sibling}[\text{next}-x]} \ldots \]

Case 1

(b) \[\ldots \xrightarrow{x} B_k \xrightarrow{b} B_k \xrightarrow{c} B_k \xrightarrow{d} \ldots \xrightarrow{\text{prev}-x} \xrightarrow{\text{next}-x} \xrightarrow{\text{Sibling}[\text{next}-x]} \ldots \]

Case 2

(c) \[\ldots \xrightarrow{x} B_k \xrightarrow{b} B_k \xrightarrow{c} B_1 \xrightarrow{d} \ldots \xrightarrow{\text{prev}-x} \xrightarrow{\text{next}-x} \xrightarrow{\text{Sibling}[\text{next}-x]} \]

\[\text{key}[x] \leq \text{key}[\text{next}-x] \]

Case 3

(d) \[\ldots \xrightarrow{x} B_k \xrightarrow{b} B_k \xrightarrow{c} B_1 \xrightarrow{d} \ldots \xrightarrow{\text{prev}-x} \xrightarrow{\text{next}-x} \xrightarrow{\text{Sibling}[\text{next}-x]} \]

\[\text{key}[x] > \text{key}[\text{next}-x] \]

Case 4
example union

1011 + 0011 = 1110

11 + 3 = 14
other operations “reduce” to union

• insertion:
 • to insert \(x \) into heap \(H \)
 • create heap \(H' \) consisting of only \(x \)
 • perform union of \(H \) and \(H' \)

• time \(O(\log n) \)
 • actually not so bad if many insertions performed
 • a sequence of \(n \) insertions into an initially empty heap uses \(O(n) \) time
 • similar: \(n \) increments (by one) of a binary counter (initially zero) makes \(O(n) \) bit flips
 • analysis: we saw something like \(\sum_{i=0}^{\log n} i2^{-i} = O(n) \) with the BuildHeap routine
extract-min

- the min is the root of one of the trees in the binomial heap H
- suppose it’s a B_k tree with root x
 - pull the tree with root x out of H
 - the children of x form a binomial heap H'
 - (H' will have one each of a B_0, B_1, ..., B_{k-1} tree)
 - perform a union H' and the reminder of H
 - return key of x
- $O(\log n)$ time
1 is the min of H

pull out the tree with 1 as root

remove 1 and look at its child list as heap H'

get union of H' with remaining heap H