Midway Experience

Midway Student Experience Survey opens next week

otp@uoregon.edu
Mon 4/12/2021 8:10 AM
To: Hank Childs

Dear Hank,

The Midway Student Experience Survey for your courses will open at 08:00 AM on Mon, Apr 19, 2021 PDT and will close at 06:00 PM on Fri, Apr 23, 2021 PDT. You can view the feedback from your students beginning April 26th at noon.

Students will receive an email from the Office of the Registrar directing them to Duckweb to complete the survey when it opens next week.

Other ways to increase response rates and quality feedback include:

1. Make it an assignment (you don’t have to give points or extra credit or even keep track).
2. Tell your students that their feedback is valuable to you.
3. Provide students with examples of useful and actionable comments, in contrast to non-actionable comments.

Resources:
Office of the Provost: Revising UO’s Teaching Evaluations
Teaching Engagement Program: Student Feedback
Office of the Registrar: Student Experience Survey FAQ

For questions, email the Office of the Provost at otp@uoregon.edu.

Thank you!
Office of the Provost
Hello Everyone,

I would like to modify the course grading structure. Currently, we are planning on 5 quizzes, at 5 points each.

I would like to add a "quiz redo" at the end of the term. Consider three students, S1, S2, and S3, who have completed all 5 quizzes. S1 forgot about Quiz 3, missed class, and got a zero, S2 performed poorly on Quiz 2, and S3 got a perfect score on every quiz.

During Week 10, we would use one lecture as a "quiz redo." S1 would choose to "redo" Quiz 3. S2 would choose to retake Quiz 2. S3 could skip class (and may feel that the redo policy worked against them). If S1 or S2 scored higher on the redo, then they would get the higher score. (Lower scores would be ignored.)

I note the "redo" quizzes would be harder than the originals -- students would need to really understand the material to improve.

I plan to discuss this proposal on Tuesday's lecture. That said, if you object and you don't want your peers to know, then you are welcome to email me private comments offline.

Best,
Hank
Thursday’s Lecture – Asynchronous (sort of)

• Links are posted on class webpages to YouTube videos
• These lectures are from last offering, but I rewatched them and they are still applicable
• WARNING: the 1E overview video has the wrong due date – April 27th, 2021, not Feb 6th, 2019.
• IMPORTANT: group discussion at 9am on Thursday
So What Do We Do On Thursday?

- Watch YouTube videos before Thursday’s class
- Call in at 9am on Thursday
- Group discussion of any questions on cameras
Class Plan

• Abhishek and I are working hard on preparing Project 2 (OpenGL)
• Projects will start coming faster
 – Want there to time to do great final projects
• 1E, 1F: simpler coding, harder concepts
Current Plan (1/2)

<table>
<thead>
<tr>
<th>Week</th>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Weds</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Lec5, 1E assigned</td>
<td>1D due</td>
<td>Lec 6 (async / group chat)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Lec 7 (shading), 1F assigned, 1E due</td>
<td>Lec 8 (GL), 2A assigned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1F due</td>
<td></td>
<td>Lec 9 (GL), 2B assigned</td>
<td>Discussion of final projects / Quiz 3</td>
<td>2A due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Lec 11 – ray tracing</td>
<td>More discussion of final projects (?)</td>
<td>2B due</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current Plan (2/2)

- Weeks 8-10 → you work on final projects
- Lectures will be on misc. topics in graphics, esp. in support of final projects
- Quiz 3 (Week 6): likely on matrices
- Quiz 4 (Week 8): likely on GL
- Quiz 5 (Week 10): likely on topics in final weeks
Hi Everyone,

We currently have an asymmetry for accessing Hank and Abhishek's Office Hours.

As of now, Abhishek’s are always at: COVERED UP (THIS IS POSTED ONLINE)

And Hank’s are accessible via the Zoom Meetings area in Canvas.

Let's chat on Tuesday about the most standard way to do this.

Finally, here is the OH schedule again:

Monday (Abhishek): 10am-11am
Tuesday (Abhishek): 945am-1045am
Wednesday (Hank): 230pm-330pm
Thursday (Abhishek): 945am-1045am

Best,
Hank
Cameras and Matrices

• Note: I will be repeating some of this content next this week.
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x, y, z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0 <= x <= width, 0 <= y <= height
Concepts coming:

- Spaces
- Basis
- Coordinates
- Frames
- Matrices
MATH!

- Concepts coming:
 - Spaces
 - Basis
 - Coordinates
 - Frames
 - Matrices
Space

- A “space” is a set of points
- Many types of spaces
Here is a space ‘S’: the points in the blue shape
We can pick an arbitrary point in S and call it our "origin."
Consider two directions, D1 and D2.
Imagine you live at “O” and you want to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X2.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X2.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X3.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X4.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X4.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Let \((a, b)\) mean:
- The number of steps ‘\(a\)’ in direction D1
- The number of steps ‘\(b\)’ in direction D2
Where is (-3, 2)?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Concepts coming:

- Spaces
- Basis
- Coordinates
- Frames
- Matrices
A basis

- Paraphrasing Wikipedia:

- Let $B = \{ D_1, D_2 \}$ (a set of two vectors, D_1 & D_2)

- Let S be our Shape

- B is a **basis** for S if every element of S can be written as a **unique** linear combination of elements of B.

- The coefficients of this linear combination are referred to as **components** or **coordinates** on B of the vector.

- The elements of a basis are called **basis vectors**.
Let \((a, b, c)\) mean:

- The number of steps ‘\(a\)’ in direction \(D_1\)
- The number of steps ‘\(b\)’ in direction \(D_2\)
- The number of steps ‘\(c\)’ in direction \(D_3\)

Then there is more than one way to get to some point \(X\) in \(S\), i.e.,

- \((a_1, b_1, c_1) = X\) and
- \((a_2, b_2, c_2) = X\)
What does it mean to form a basis?

- For any vector v, there are unique coordinates $(c_1, ..., c_n)$ such that
 $$v = c_1 v_1 + c_2 v_2 + ... + c_n v_n$$

- Consider some point P.
 - This point is relative to some origin O
 - There is a vector v such that $O + v = P$
 - We know we can construct v using a combination of v_i's
 - Therefore we can represent P using the coordinates $(c_1, c_2, ..., c_n)$
A basis

- Paraphrasing Wikipedia:
 - Let $B = \{D_1, D_2\}$ (a set of two vectors, D_1 & D_2)
 - Let S be our Shape
 - B is a **basis** for S if every element of S can be written as a **unique** linear combination of elements of B.
 - The coefficients of this linear combination are referred to as **components** or **coordinates** on B of the vector.
 - The elements of a basis are called **basis vectors**.
Most common basis

- D1 = X-axis (i.e., (1,0,0)-(0,0,0))
- D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
- D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

Then the coordinate (2, -3, 5) means

- 2 units along X-axis
- -3 units along Y-axis
- 5 units along Z-axis
But we could have other bases

- Instead of “basis 1” (B1)
 - D1 = X-axis (i.e., (1,0,0)-(0,0,0))
 - D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
 - D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

- Use “basis 2” (B2)
 - D1 = Y-axis (i.e., (0,1,0)-(0,0,0))
 - D2 = X-axis (i.e., (1,0,0)-(0,0,0))
 - D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

- Then (a,b,c) in B1 is the same as (b,a,c) in B2
Concepts coming:

- Spaces
- Basis
- Coordinates
- Frames
- Matrices
Frames

- **Frame:**
 - A way to place a coordinate system into a specific location in a space
 - Basis + reference coordinate (“the origin”)

- **Cartesian example: (3,4,6)**
 - It is assumed that we are speaking in reference to the origin location (0,0,0).
Example of Frames

- Frame $F = (v_1, v_2, O)$
 - $v_1 = (0, -1)$
 - $v_2 = (1, 0)$
 - $O = (3, 4)$

- What are F’s coordinates for the point $(6, 6)$?
Example of Frames

- Frame $F = (v_1, v_2, O)$
 - $v_1 = (0, -1)$
 - $v_2 = (1, 0)$
 - $O = (3, 4)$

- What are F’s coordinates for the point $(6, 6)$?

- Answer: $(-2, 3)$
Each box is a frame, and each arrow converts to the next frame.

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x,y,z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0 <= x <= width, 0 <= y <= height
Context

- Models stored in “world space” frame
 - Pick an origin, store all points relative to that origin
- We have been rasterizing in “device space” frame
- Our goal: transform from world space to device space
- We will do this using matrix multiplications
 - Multiply point by matrix to convert coordinates from one frame into coordinates in another frame
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
x_3 & y_3 & z_3
\end{pmatrix}
=
\begin{pmatrix}
x_1 + dx & y_1 + dy & 1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
dx & dy & 1
\end{pmatrix}
\]
But wait! There’s more...

- And matrices also useful for more than frame-to-frame conversions.

- So let’s get comfy with matrices (next time).
THIS IS WHERE WE STOPPED LAST TIME
Matrix

- Defined: a rectangular array of numbers (usually) arranged in rows and columns

- Example
 - 2D matrix
 - “two by three” (two rows, three columns)
 - [3, 4, 8]
 - [-1, 9.2, 12]
m-by-n matrix

\[
\begin{bmatrix}
 a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\
 a_{2,1} & a_{2,2} & a_{2,3} & \cdots \\
 a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\
 \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

i changes

m rows

n columns

j changes
What do you do with matrices?

Lots of things

- Transpose, invert, add, subtract

But most of all: multiply!
Multiplying two 2x2 matrices

\[
\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix}
\begin{pmatrix}
e & f \\
g & h \\
\end{pmatrix}
=
\begin{pmatrix}
a*e+b*g & a*f+b*h \\
c*e+d*g & c*f+d*h \\
\end{pmatrix}
\]
Multiplying two 2x2 matrices

\[
\begin{pmatrix}
a & b \\
e & f
\end{pmatrix}
\begin{pmatrix}
a*e + b*g \\
a*f + b*h
\end{pmatrix}
\begin{pmatrix}
g \\
h
\end{pmatrix}
\]

One usage for matrices:
Let \((a, b)\) be the coordinates of a point
Then the 2x2 matrix can transform \((a, b)\) to a new location \(- (a*e + b*g, a*f + b*h)\)
Identity Matrix

\[
\begin{pmatrix}
a & b \\
1 & 0 \\
an & b
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix} =
\end{align*}
\]
\[
\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2a & b \\ \end{pmatrix} = \\
\text{Scale in } X, \text{ not in } Y
\]
\[(a \ b) \quad (s \ 0) \quad (sa \ \ tb)\]

\[X \quad (0 \ t) \quad = \quad \text{Scale in both dimensions}\]
\[(a \ b) \quad (0 \ -1) \quad (b \ -a)\]

\[X \quad (1 \ 0) = \]

Rotate 90 degrees clockwise
$$\begin{pmatrix} a & b \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -b & a \end{pmatrix} = \begin{pmatrix} -b & a \\ (a, b) \end{pmatrix}$$

Rotate 90 degrees counter-clockwise
(a b) (\cos(\Omega) \ -\sin(\Omega))

\[\begin{pmatrix} \sin(\Omega) & \cos(\Omega) \end{pmatrix} \]

X = (\cos(\Omega)*a + \sin(\Omega)*b, -\sin(\Omega)*a + \cos(\Omega)*b)

Rotate "\Omega" degrees counter-clockwise
Combining transformations

- How do we rotate by 90 degrees clockwise and then scale X by 2?
 - Answer: multiply by matrix that multiplies by 90 degrees clockwise, then multiple by matrix that scales X by 2.
 - But can we do this efficiently?

\[
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
X
=
\begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}
\]
Combining transformations

- How do we scale X by 2 and then rotate by 90 degrees clockwise?

 Answer: multiply by matrix that scales X by 2, then multiply by matrix that rotates 90 degrees clockwise.

\[
\begin{pmatrix}
2 & 0 \\
0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
0 & -2 \\
1 & 0 \\
\end{pmatrix}
\]

\[
X = \begin{pmatrix}
0 & -1 \\
1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
2 & 0 \\
0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
0 & 1 \\
\end{pmatrix}
\]

- Rotate then scale
- Order matters!!
Translation is harder:

\[(a) \quad (c) \quad (a+c)\]
\[+\quad (b) \quad (d) \quad = \quad (b+d)\]

But this doesn’t fit our nice matrix multiply model…
What to do??
Homogeneous Coordinates

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \times
\begin{pmatrix}
x & y & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
x & y & 1
\end{pmatrix}
\]

Add an extra dimension.
A math trick … don’t overthink it.
Homogeneous Coordinates

Translation

We can now fit translation into our matrix multiplication system.

\[
\begin{pmatrix}
1 & 0 & 0 \\
x & y & 1 \\
x + dx & y + dy & 1
\end{pmatrix} =
\begin{pmatrix}
(1 & 0 & 0) \\
(0 & 1 & 0) & (dx & dy & 1)
\end{pmatrix}
\]
Two really important operations:
- Transform from one frame to another
- Transform geometry (rotate, translate, etc)

Both can be done with matrix operations

In both cases, need homogeneous coordinates

Much of graphics is accomplished via 4x4 matrices
- And: you can compose the matrices and do bunches of things at once (EFFICIENCY)
<table>
<thead>
<tr>
<th>Former type</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traded as</td>
<td>NYSE: SGI</td>
</tr>
<tr>
<td></td>
<td>OTC Pink: SGID.pk</td>
</tr>
<tr>
<td></td>
<td>NASDAQ: SGIC</td>
</tr>
<tr>
<td>Industry</td>
<td>Computer hardware and software</td>
</tr>
<tr>
<td>Fate</td>
<td>Chapter 11 bankruptcy; assets acquired by Rackable Systems, which renamed itself Silicon Graphics International Corp.</td>
</tr>
<tr>
<td>Founded</td>
<td>November 9, 1981; 37 years ago Mountain View, California, U.S.</td>
</tr>
<tr>
<td>Defunct</td>
<td>May 11, 2009</td>
</tr>
<tr>
<td>Headquarters</td>
<td>Sunnyvale, California, U.S.</td>
</tr>
<tr>
<td>Key people</td>
<td>Jim Clark, Kurt Akeley, Ed McCracken, Thomas Jermoluk</td>
</tr>
<tr>
<td>Products</td>
<td>High-performance computing, visualization and storage</td>
</tr>
<tr>
<td>Website</td>
<td>www.sgi.com/</td>
</tr>
</tbody>
</table>
3dfx Voodoo
(source: wikipedia)
Early GPUs

- Special hardware to do 4x4 matrix operations
- A lot of them (in parallel)
GPUs now

- Many, many, many cores
- Each code less powerful than typical CPU core
STOP HERE – rest on YouTube

- Look as a class
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within
 \[-1 \leq x, y, z \leq +1\]

Screen space:
- All viewable objects within
 \[-1 \leq x, y \leq +1\]

Device space:
- All viewable objects within
 \[0 \leq x \leq \text{width}, 0 \leq y \leq \text{height}\]
World Space

- World Space is the space defined by the user’s coordinate system.
- This space contains the portion of the scene that is transformed into image space by the camera transform.
- Many of the spaces have “bounds”, meaning limits on where the space is valid.
- With world space 2 options:
 - No bounds
 - User specifies the bound
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within $-1 \leq x, y, z \leq +1$

Screen space:
- All viewable objects within $-1 \leq x, y \leq +1$

Device space:
- All viewable objects within $0 \leq x \leq \text{width}$, $0 \leq y \leq \text{height}$

Camera Transform
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x, y, z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0 <= x <= width, 0 <= y <= height
How do we specify a camera?

The “viewing pyramid” or “view frustum”.

Frustum: In geometry, a frustum (plural: frusta or frustums) is the portion of a solid (normally a cone or pyramid) that lies between two parallel planes cutting it.

class Camera
{
 public:
 double near, far;
 double angle;
 double position[3];
 double focus[3];
 double up[3];
};
What is the up axis?

- Up axis is the direction from the base of your nose to your forehead
What is the up axis?

- Up axis is the direction from the base of your nose to your forehead.
What is the up axis?

- Up axis is the direction from the base of your nose to your forehead.

- (if you lie down while watching TV, the screen is sideways)
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x, y, z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0 <= x <= width, 0 <= y <= height
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x, y, z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0 <= x <= width, 0 <= y <= height
Image Space

- Image Space is the three-dimensional coordinate system that contains screen space.
- It is the space where the camera transformation directs its output.
- The bounds of Image Space are 3-dimensional cube.
 \[\{(x, y, z) : -1 \leq x \leq 1, -1 \leq y \leq 1, -1 \leq z \leq 1\} \]

 (or \(-1 \leq z \leq 0 \))
Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

Image space:
All viewable objects within
-1 <= x, y, z <= +1

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0 <= x <= width, 0 <= y <= height
Screen Space

- Screen Space is the intersection of the xy-plane with Image Space.
- Points in image space are mapped into screen space by projecting via a parallel projection, onto the plane $z = 0$.
- Example:
 - a point $(0, 0, z)$ in image space will project to the center of the display screen.
Screen Space Diagram
Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

Image space:
All viewable objects within
-1 <= x, y, z <= +1

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0 <= x <= width, 0 <= y <= height
Device Space

- Device Space is the lowest level coordinate system and is the closest to the hardware coordinate systems of the device itself.

- Device space is usually defined to be the $n \times m$ array of pixels that represent the area of the screen.

- A coordinate system is imposed on this space by labeling the lower-left-hand corner of the array as $(0,0)$, with each pixel having unit length and width.
Device Space Example

- Pixel (0, 0)
- Pixel (3, 7)
- Pixel (15, 15)
Device Space With Depth Information

- Extends Device Space to three dimensions by adding z-coordinate of image space.

- Coordinates are \((x, y, z)\) with
 \[0 \leq x \leq n\]
 \[0 \leq y \leq m\]
 \[z\] arbitrary (but typically \(-1 \leq z \leq +1\) or \(-1 \leq z \leq 0\))
How do we transform?

- For a camera C,
 - Calculate Camera Frame
 - From Camera Frame, calculate Camera Transform
 - Calculate View Transform
 - Calculate Device Transform
 - Compose 3 Matrices into 1 Matrix (M)

- For each triangle T, apply M to each vertex of T, then apply rasterization/zbuffer

```cpp
class Camera {
    public:
        double near, far;
        double angle;
        double position[3];
        double focus[3];
        double up[3];
};
```
Easiest Transform

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within
 \(-1 \leq x,y,z \leq +1\)

Screen space:
- All viewable objects within
 \(-1 \leq x, y \leq +1\)

Device space:
- All viewable objects within
 \(0 \leq x \leq \text{width}, 0 \leq y \leq \text{height}\)
(x, y, z) \rightarrow (x', y', z'), where

- $x' = n \cdot (x + 1)/2 = nx/2 + n/2$
- $y' = m \cdot (y + 1)/2 = my/2 + m/2$
- $z' = z = z$

(for an n x m image)

Matrix:

\[
\begin{pmatrix}
 x & y & z & 1 \\
 n/2 & 0 & 0 & 0 \\
 0 & m/2 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 n/2 & m/2 & 0 & 1
\end{pmatrix}
\]
More Math Prep

Note: Ken Joy’s graphics notes are fantastic
What is the norm of a vector?

- The norm of a vector is its length
 - Denoted with $\| \cdot \|$
- For a vector $A = (A.x, A.y)$,
 \[\| A \| = \sqrt{A.x \cdot A.x + A.y \cdot A.y} \]
- Physical interpretation:
- For 3D, $\| A \| = \sqrt{A.x \cdot A.x + A.y \cdot A.y + A.z \cdot A.z}$
What does it mean for a vector to be normalized?

- The vector A is normalized if $\|A\| = 1$.
 - This is also called a unit vector.
- To obtain a normalized vector, take $A/\|A\|$

Many of the operations we will discuss today will only work correctly with normalized vectors.

Example: $A = (3, 4, 0)$. Then:

- $\|A\| = 5$
- $A/\|A\| = (0.6, 0.8, 0)$
What is a dot product?

- \(\mathbf{A} \cdot \mathbf{B} = A.x \cdot B.x + A.y \cdot B.y \)
 - (or \(A.x \cdot B.x + A.y \cdot B.y + A.z \cdot B.z \))

- **Physical interpretation:**
 - \(\mathbf{A} \cdot \mathbf{B} = \cos(\alpha) \cdot (||A|| \cdot ||B||) \)

\[
\mathbf{A} = (A.x, A.y) \\
\mathbf{B} = (B.x, B.y)
\]
What is the cross product?

\[\mathbf{A} \times \mathbf{B} = (A.y \mathbf{B}.z - A.z \mathbf{B}.y, \\
B.x \mathbf{A}.z - A.x \mathbf{B}.z, \\
A.x \mathbf{B}.y - A.y \mathbf{B}.x) \]

What is the physical interpretation of a cross product?

- Finds a vector perpendicular to both \(\mathbf{A} \) and \(\mathbf{B} \).
Homogeneous Coordinates

- Defined: a system of coordinates used in projective geometry, as Cartesian coordinates are used in Euclidean geometry

- Primary uses:
 - 4×4 matrices to represent general 3-dimensional transformations
 - it allows a simplified representation of mathematical functions – the rational form – in which rational polynomial functions can be simply represented

- We only care about the first
 - I don’t really even know what the second use means
Interpretation of Homogeneous Coordinates

- 4D points: \((x, y, z, w)\)
- Our typical frame: \((x, y, z, 1)\)
Interpretation of Homogeneous Coordinates

- 4D points: \((x, y, z, w)\)
- Our typical frame: \((x, y, z, 1)\)

Our typical frame in the context of 4D points

So how to treat points not along the \(w=1\) line?
Let $P = (x, y, z, w)$ be a 4D point with $w \neq 1$

Goal: find $P' = (x', y', z', 1)$ such P projects to P'

(We have to define what it means to project)

Idea for projection:
- Draw line from P to origin.
- If Q is along that line (and $Q.w == 1$), then Q is a projection of P
Idea for projection:

- Draw line from P to origin.
- If Q is along that line (and $Q \cdot w = 1$), then Q is a projection of P.
So what is Q?

- Similar triangles argument:
 - $x' = x/w$
 - $y' = y/w$
 - $z' = z/w$
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

- Need to construct a Camera Frame
- Need to construct a matrix to transform points from Cartesian Frame to Camera Frame
 - Transform triangle by transforming its three vertices
Camera frame must be a basis:

- Spans space ... can get any point through a linear combination of basis vectors

- Every member must be linearly independent
 - we didn’t talk about this much on Thursday.
 - linearly independent means that no basis vector can be represented via others
 - Repeat slide (coming up) shows linearly *dependent* vectors
Let (a, b, c) mean:

- The number of steps ‘a’ in direction D_1
- The number of steps ‘b’ in direction D_2
- The number of steps ‘c’ in direction D_3

Then there is more than one way to get to some point X in S, i.e.,

- $(a_1, b_1, c_1) = X$ and
- $(a_2, b_2, c_2) = X$
Camera frame construction

- Must choose \((u,v,w,O)\)

```
class Camera {
  public:
    double near, far,
    double angle;
    double position[3],
    focus[3],
    up[3];
};
```

Camera space:
- Camera located at origin, looking down \(-Z\)
- Triangle coordinates relative to camera frame

- \(O = \text{camera position}\)

- \(w = O\)-focus
 - Not “focus-\(O\)”, since we want to look down \(-Z\)
Camera frame construction

- Must choose \((u, v, w, O)\)

- \(O\) = camera position
- \(w\) = \(O\)-focus
- \(v\) = up
- \(u\) = up \(\times\) \((O\)-focus)
But wait ... what if \(\text{dot}(v_2, v_3) \neq 0 \)?

- We can get around this with two cross products:
 - \(u = \text{Up} \times (O\text{-focus}) \)
 - \(v = (O\text{-focus}) \times u \)
Camera frame summarized

- $O = \text{camera position}$
- $u = \text{Up} \times (O - \text{focus})$
- $v = (O - \text{focus}) \times u$
- $w = O - \text{focus}$

Important note:
u, v, and w need to be normalized!

```cpp
class Camera {
    public:
        double near, far;
        double angle;
        double position[3];
        double focus[3];
        double up[3];
};
```
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

- Need to construct a Camera Frame
- Need to construct a matrix to transform points from Cartesian Frame to Camera Frame
 - Transform triangle by transforming its three vertices
Consider the meaning of Cartesian coordinates \((x, y, z)\):

\[
\begin{bmatrix}
 x & y & z & 1
\end{bmatrix}
\begin{bmatrix}
 <0,0,1> \\
 <0,1,0> \\
 <1,0,0>
\end{bmatrix} = (x, y, z)
\]

\[
\begin{bmatrix}
 <0,0,1> \\
 <0,1,0> \\
 <1,0,0>
\end{bmatrix}
\]

\[(0,0,0)\]
The Two Frames of the Camera Transform

- Our two frames:
 - Cartesian:
 - <1,0,0>
 - <0,1,0>
 - <0,0,1>
 - (0,0,0)
 - Camera:
 - u = up x (O-focus)
 - v = (O-focus) x u
 - w = (O-focus)
 - O
The Two Frames of the Camera Transform

- Our two frames:
 - Cartesian:
 - \(<1,0,0> \)
 - \(<0,1,0> \)
 - \(<0,0,1> \)
 - \((0,0,0) \)
 - Camera:
 - \(u = \text{up} \times (O\text{-focus}) \)
 - \(v = (O\text{-focus}) \times u \)
 - \(w = (O\text{-focus}) \)
 - \(O \)

The “Camera Frame” is a Frame, so we can express any Cartesian vector as a combination of \(u, v, w \).
Converting From Cartesian Frame To Camera Frame

- The Cartesian vector \(<1,0,0>\) can be represented as some combination of the Camera Frame’s basis functions \(u, v, w\):
 \[<1,0,0> = e1,1 \times u + e1,2 \times v + e1,3 \times w \]

- So can the Cartesian vector \(<0,1,0>\):
 \[<0,1,0> = e2,1 \times u + e2,2 \times v + e2,3 \times w \]

- So can the Cartesian vector \(<0,0,1>\):
 \[<0,0,1> = e3,1 \times u + e3,2 \times v + e3,3 \times w \]

- So can the vector: Cartesian Frame origin – Camera Frame origin
 \[(0,0,0) - 0 = e4,1 \times u + e4,2 \times v + e4,3 \times w \]
 \[(0,0,0) = e4,1 \times u + e4,2 \times v + e4,3 \times w + O \]
Putting Our Equations Into Matrix Form

\[
\begin{align*}
<1,0,0> &= e_{1,1} * u + e_{1,2} * v + e_{1,3} * w \\
<0,1,0> &= e_{2,1} * u + e_{2,2} * v + e_{2,3} * w \\
<0,0,1> &= e_{3,1} * u + e_{3,2} * v + e_{3,3} * w \\
(0,0,0) &= e_{4,1} * u + e_{4,2} * v + e_{4,3} * w + O \\
\Rightarrow \\
[<1,0,0>] &= [e_{1,1} \ e_{1,2} \ e_{1,3} \ 0] [u] \\
[<0,1,0>] &= [e_{2,1} \ e_{2,2} \ e_{2,3} \ 0] [v] \\
[<0,0,1>] &= [e_{3,1} \ e_{3,2} \ e_{3,3} \ 0] [w] \\
(0,0,0) &= [e_{4,1} \ e_{4,2} \ e_{4,3} \ 1] [O]
\end{align*}
\]
Here Comes The Trick…

- Consider the meaning of Cartesian coordinates (x,y,z):

\[
\begin{bmatrix}
x \\ y \\ z \\ 1
\end{bmatrix}
= (x,y,z)
\]

But:

\[
\begin{bmatrix}
<1,0,0>
\end{bmatrix}
= (x,y,z)
\]

\[
\begin{bmatrix}
<0,1,0>
\end{bmatrix}
= (x,y,z)
\]

\[
\begin{bmatrix}
<0,0,1>
\end{bmatrix}
= (x,y,z)
\]

\[
\begin{bmatrix}
(0,0,0)
\end{bmatrix}
= (x,y,z)
\]
Here Comes The Trick...

But:

\[
\begin{bmatrix}
<1,0,0> \\
[x \ y \ z \ 1] \\
<0,0,1>
\end{bmatrix} \\
[0,0,0]
\]

\[
\begin{bmatrix}
e1,1 & e1,2 & e1,3 & 0 \\
e2,1 & e2,2 & e2,3 & 0 \\
e3,1 & e3,2 & e3,3 & 0 \\
e4,1 & e4,2 & e4,3 & 1
\end{bmatrix}
\]

\[
[u] \\
[v] \\
w \\
[O]
\]

Coordinates of \((x,y,z)\) with respect to Cartesian frame.

Coordinates of \((x,y,z)\) with respect to Camera frame.

So this matrix is the camera transform!!
And Cramer’s Rule Can Solve This, For Example…

\[
e_{1,1} = \frac{(\langle 1,0,0 \rangle \times \bar{v}) \cdot \bar{w}}{(\bar{u} \times \bar{v}) \cdot \bar{w}}
\]

\[
e_{1,2} = \frac{(\bar{u} \times \langle 1,0,0 \rangle) \cdot \bar{w}}{(\bar{u} \times \bar{v}) \cdot \bar{w}}
\]

\[
e_{1,3} = \frac{(\bar{u} \times \bar{v}) \cdot \langle 1,0,0 \rangle}{(\bar{u} \times \bar{v}) \cdot \bar{w}}
\]

(u == v1, v == v2, w == v3 from previous slide)
Solving the Camera Transform

\[
\begin{bmatrix}
e_{1,1} & e_{1,2} & e_{1,3} & 0 \\
e_{2,1} & e_{2,2} & e_{2,3} & 0 \\
e_{3,1} & e_{3,2} & e_{3,3} & 0 \\
e_{4,1} & e_{4,2} & e_{4,3} & 1 \\
\end{bmatrix}
= \begin{bmatrix}
u \cdot t & v \cdot t & w \cdot t & 1 \\
\end{bmatrix}
\]

Where \(t = (0,0,0) - O \)

How do we know?: Cramer’s Rule + simplifications

Want to derive?:

Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x, y, z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0 <= x <= width, 0 <= y <= height

View Transform
The viewing transformation is not a combination of simple translations, rotations, scales or shears: it is more complex.
I personally don’t think it is a good use of class time to derive this matrix.

Well derived at:

The View Transformation

- Input parameters: \((\alpha, n, f)\)
- Transforms view frustum to image space cube
 - View frustum: bounded by viewing pyramid and planes \(z=-n\) and \(z=-f\)
 - Image space cube:
 \[-1 \leq u,v,w \leq 1\]
 \[
 \begin{bmatrix}
 \cot(\alpha/2) & 0 & 0 & 0 \\
 0 & \cot(\alpha/2) & 0 & 0 \\
 0 & 0 & (f+n)/(f-n) & -1 \\
 0 & 0 & 2fn/(f-n) & 0
 \end{bmatrix}
 \]
 - Cotangent = \(1/\text{tangent}\)
Let’s do an example

- **Input parameters**: \((\alpha, n, f) = (90, 5, 10)\)

\[
\begin{bmatrix}
\cot(\alpha/2) & 0 & 0 & 0 & 0 \\
0 & \cot(\alpha/2) & 0 & 0 & 0 \\
0 & 0 & (f+n)/(f-n) & -1 \\
0 & 0 & 2fn/(f-n) & 0
\end{bmatrix}
\]
Let’s do an example

- **Input parameters:** $(\alpha, n, f) = (90, 5, 10)$

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & -1 \\
0 & 0 & 20 & 0 \\
\end{bmatrix}
\]
Let's do an example

- **Input parameters:** \((\alpha, n, f) = (90, 5, 10)\)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & -1 \\
0 & 0 & 20 & 0
\end{bmatrix}
\]

Let's multiply some points:
- \((0,7,-6,1)\)
- \((0,7,-8,1)\)
Let's do an example

- **Input parameters:** \((\alpha, n, f) = (90, 5, 10)\)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & -1 \\
0 & 0 & 20 & 0
\end{bmatrix}
\]

Let's multiply some points:

- \((0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)\)
- \((0,7,-8,1) = (0,7,-4,8) = (0, 0.88, -0.5)\)
Let’s do an example

- **Input parameters:** \((\alpha, n, f) = (90, 5, 10)\)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & -1 \\
0 & 0 & 20 & 0
\end{bmatrix}
\]

More points:
- \((0,7,-4,1) = (0,7,8,4) = (0, 1.75, 2)\)
- \((0,7,-5,1) = (0,7,5,5) = (0, 1.4, 1)\)
- \((0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)\)
- \((0,7,-8,1) = (0,7,-4,8) = (0, 0.88, -0.5)\)
- \((0,7,-10,1) = (0,7,-10,10) = (0, 0.7, -1)\)
- \((0,7,-11,1) = (0,7,-13,11) = (0, .63, -1.18)\)
The viewing transformation is not a combination of simple translations, rotations, scales or shears: it is more complex.
View Transformation

More points:
- $(0, 7, -4, 1) = (0, 7, 8, 4) = (0, 1.75, 2)$
- $(0, 7, -5, 1) = (0, 7, 5, 5) = (0, 1.4, 1)$
- $(0, 7, -6, 1) = (0, 7, 2, 6) = (0, 1.16, 0.33)$
- $(0, 7, -8, 1) = (0, 7, -4, 8) = (0, 0.88, -0.5)$
- $(0, 7, -10, 1) = (0, 7, -10, 10) = (0, 0.7, -1)$
- $(0, 7, -11, 1) = (0, 7, -13, 11) = (0, 0.63, -1.18)$

Note there is a non-linear relationship in W (“Z”).
Putting It All Together
How do we transform?

- For a camera \(C \),
 - Calculate Camera Frame
 - From Camera Frame, calculate Camera Transform
 - Calculate View Transform
 - Calculate Device Transform
 - Compose 3 Matrices into 1 Matrix \((M)\)

- For each triangle \(T \), apply \(M \) to each vertex of \(T \), then apply rasterization/zbuffer
Project 1E
Project #1E (6%), Due Tues April 27th

- Goal: add arbitrary camera positions
- Extend your project1D code
- New: proj1e_geometry.vtk available on web (9MB), “reader1e.cxx”.
- New: Matrix.cxx, Camera.cxx
- No Cmake, project1E.cxx
Project #1E, expanded

- Matrix.cxx: complete

- Methods:

```cpp
class Matrix
{
    public:
        double          A[4][4];

        void TransformPoint(const double *ptIn, double *ptOut);
        static Matrix   ComposeMatrices(const Matrix &, const Matrix &);
        void            Print(ostream &o);
};
```
Camera.cxx: you work on this

class Camera
{
 public:
 double near, far;
 double angle;
 double position[3];
 double focus[3];
 double up[3];

 Matrix ViewTransform(void) {;;};
 Matrix CameraTransform(void) {;;};
 Matrix DeviceTransform(void) {;;};
 // Will probably need something for calculating Camera Frame as well
};

Also: GetCamera(int frame, int nFrames)
Project #1E, deliverables

- Same as usual, but times 4
 - 4 images, corresponding to
 - GetCamera(0, 1000)
 - GetCamera(250, 1000)
 - GetCamera(500, 1000)
 - GetCamera(750, 1000)

- If you want:
 - Generate all thousand images, make a movie
 - Then you should wait for 1F. Then we will have shading too.
Project #1E, game plan

vector<Triangle> t = GetTriangles();
AllocateScreen();
for (int i = 0 ; i < 4 ; i++)
{
 int f = 250*i;
 InitializeScreen();
 Camera c = GetCamera(f, 1000);
 TransformTrianglesToDeviceSpace(); // involves setting up and applying matrices
 //... if you modify vector<Triangle> t,
 // remember to undo it later

 RenderTriangles();
 SaveImage();
}
Correct answers given for GetCamera(0, 1000)

Camera Frame: U = 0, 0.707107, -0.707107
Camera Frame: V = -0.816497, 0.408248, 0.408248
Camera Frame: W = 0.57735, 0.57735, 0.57735
Camera Frame: O = 40, 40, 40

Camera Transform
(0.0000000 -0.8164966 0.5773503 0.0000000)
(0.7071068 0.4082483 0.5773503 0.0000000)
(-0.7071068 0.4082483 0.5773503 0.0000000)
(0.0000000 0.0000000 -69.2820323 1.0000000)

View Transform
(3.7320508 0.0000000 0.0000000 0.0000000)
(0.0000000 3.7320508 0.0000000 0.0000000)
(0.0000000 0.0000000 1.0512821 -1.0000000)
(0.0000000 0.0000000 10.2564103 0.0000000)

Transformed 37.1132, 37.1132, 37.1132, 1 to 0, 0, 1
Transformed -75.4701, -75.4701, -75.4701, 1 to 0, 0, -1
Project #1E pitfalls

- All vertex multiplications use 4D points. Make sure you send in 4D points for input and output, or you will get weird memory errors.
 - Make sure you divide by w.
People often get a matrix confused with its transpose. Use the method `Matrix::Print()` to make sure the matrix you are setting up is what you think it should be. Also, remember the points are left multiplied, not right multiplied.

Regarding multiple renderings:
- Don’t forget to initialize the screen between each render
- If you modify the triangle in place to render, don’t forget to switch it back at the end of the render
Project #1F (8%), Due Monday May 3rd

- Goal: add shading, movie