1. Using the graph below, show the start and finish times determined by DFS. Using those finish times, provide a topological sort of the nodes of the graph. As on the homework, visit nodes in alphabetical order.

(sol’n:)
The input graph is figure 1. The start and finish times are shown on the graph of figure 2. The derived topologic sort is g, a, e, f, c, b, d.

2. We are given a weighted (positive weights) undirected graph $G = (V, E)$, and a set $F \subseteq V$ of special nodes. The nodes represent all locations in a city, and the set F represents the locations of a firehouse. For planning purposes, we want to know, for each location in the city, the minimum distance to some firehouse. Describe (briefly) an $O((V + E) \lg V)$ algorithm to do this. Refer to known algorithms and describe the (simple) modification.

(sol’n:)
The simplest approach is to change the initialization step of Dijkstra’s method: for every $v \in F$, set the initial distance of v to 0, and to ∞ for all $v \notin F$. Then put them all in a priority queue and run the rest of Dijkstra’s method, otherwise unchanged.

Alternatively, create a new node v' and create new edges (v', v), for all $v \in F$, with all the new edges having weight 0. Then run Dijkstra’s method on the new graph with start vertex $s = v'$.

3. Illustrate the Floyd-Warshall algorithm on the graph with the following weight matrix

\[
\begin{pmatrix}
0 & 8 & \infty & \infty \\
8 & 0 & 5 & 3 \\
\infty & 5 & 0 & 6 \\
\infty & 3 & 6 & 0
\end{pmatrix}
\]

Show the intermediate matrices for $k = 1, 2, 3, 4$. Note that the graph is undirected (and hence the matrix is symmetric).

(sol’n:)
The input matrix above is the initial $D^{(0)}$. The remaining computed matrices are below (boxes indicate a change from the previous matrix).

\[
D^{(1)} = D^{(0)}
\]

\[
D^{(2)} = \begin{pmatrix}
0 & 8 & 13 & 11 \\
8 & 0 & 5 & 3 \\
13 & 5 & 0 & 6 \\
11 & 3 & 6 & 0
\end{pmatrix} = D^{(3)} = D^{(4)}
\]
4. The Oregon Department of Transportation (ODOT) has decided to place a series of warning signs along a section of a major road. This is a one-way road and the dangerous sections are at mileposts \((m_1, m_2, \ldots, m_n)\). They wish to cover each of these locations, meaning that for each milepost there should be a sign at that point or at most \(k\) miles before it. Formally, for each milepost \(m_i\), it is covered if there is a sign at some \(m_j\) \((j \leq i)\) with \(m_i - m_j \leq k\).

Signs can only be placed at a milepost and there is a cost \(c_i\) to place a sign at \(m_i\). The input consists of \([m_1, m_2, \ldots, m_n]\), \([c_1, c_2, \ldots, c_n]\), and \(k\). You can assume that the \(m_i\) are sorted \((m_{i-1} < m_i)\) and that \(c_i > 0\). The goal here is to determine the minimum total cost of a placement of signs at mileposts that covers all locations.

To start a dynamic programming solution, we define subproblem \(WS(i)\) to be the minimum placement cost of warning signs such that \((i)\) there is a sign at location \(m_i\) and \((ii)\) locations \(m_1, m_2, \ldots, m_{i-1}\) are also covered. The overall cost that we can report to ODOT is \(\min\{WS(i) \mid 1 \leq i \leq n, \ m_n - m_i \leq k \}\).

Give a recurrence relation for WS. Include the base case(s).

\((sol'n:)\)

base case: \(WS(1) = c_1\), since we must place a warning sign at \(m_1\).

recurrence: When \(i > 1\) we place a sign at \(i\), then look for the minimum cost to cover location \(i - 1\) (at \(m_{i-1}\)). To do this, look at all locations at \(i - 1\) or up to \(k\) miles before it.

\[WS(i) = c_i + \min\{WS(j) \mid 1 \leq j < i, \ m_{i-1} - m_j \leq k\}\].

\(\square\)
Figure 1: graph for question 1

Figure 2: solution for question 1