Recall the Longest Palindromic Subsequence problem from the DPV text (exercise 6.7) and discussed in class, which is to find the length of the longest subsequence of \(x = x_1x_2 \cdots x_n \) which is a palindrome. (Note that it is a subsequence, so the chosen characters do not have to appear next to each other in \(x \).) To find the longest length, we define the subproblem \(LP(i, j) \) to be the length of the longest palindromic subsequence of \(x_i \cdots x_j \). The recurrence we derived in class looks like

\[
LP(i, j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
2 + LP(i + 1, j - 1) & \text{if } i < j \text{ and } x_i = x_j \\
\max(LP(i + 1, j), LP(i, j - 1)) & \text{if } i < j \text{ and } x_i \neq x_j
\end{cases}
\]

The length of the longest palindromic subsequence of \(x \) is thus \(LP(1, n) \).

You are to write pseudo-code which will fill up an array \(LP \) in either a bottom-up (iterative) manner or in a top-down (memoized) manner.

PART I: My pseudo-code is **ITERATIVE** or **MEMOIZED** (choose one)

PART II: The time bound of my pseudo-code is:

PART III: Give pseudo-code.