Sample Recurrence for Assignment 5

1 recall

The situation for this programming assignment is that we have

- coins of denominations d_1, d_2, \ldots, d_n
- a target value T
- where all denominations are distinct
- and 5 coins of each denomination

The problem is to write code that will determine the maximum number of coins that will add up to the target value T (exactly). Here we describe a recurrence relation to get you started on the code part.

2 subproblem

Define $MC(t, k)$ to be the maximum number of coins chosen from at most 5 each of d_1, d_2, \ldots, d_k that add up to exactly t. The valid ranges of t and k are $0 \leq t \leq T$ and $0 \leq k \leq n$ (although for convenience below we allow $t < 0$ to be considered).

3 recurrence

The idea for inputs t and k (for coins d_1, d_2, \ldots, d_k) is to try all allowed amounts of coin d_k and test the effects of that while using coins $d_1, d_2, \ldots, d_{k-1}$ on the remaining value (using $MC(*)$, $k-1$ recursively). If i of the d_k coins are used, the remaining target value is $t - i \cdot d_k$, so i should be added to $MC(t - i \cdot d_k, k - 1)$.

$$MC(t, k) = \begin{cases} 0 & \text{if } t = 0 \\ -\infty & \text{if } t < 0 \\ -\infty & \text{if } k = 0 \text{ and } t > 0 \\ \max\{ i + MC(t - i \cdot d_k, k - 1) \mid 0 \leq i \leq 5 \} & \text{otherwise} \end{cases}$$
4 target value

Want to return $MC(T, n)$. In this formulation it is not possible to get a set of coins to add up to T if $MC(T, n) < 0$.