1. exercise 3.8(b,c) [same in 1st, 2nd, 3rd editions]

2. Carefully describe (give state diagram) a TM which will add one to the binary representation of a number. The number will have a $ on the left end.
 - If the input is the empty string, then the output should be $.
 - if the input is $, the output should be $0
 - if the input is (for example) $1010, the output should be $1011, and $111 should result in $1000
 - leading zeroes are acceptable ($010 becomes $011)
 - after correctly transforming the input, halt by entering the accepting state
 - if the input is poorly formed (such as $$ or $010), reject it.

3. exercise 3.13: What can a Turing machine with stay-put instead of left compute?

4. exercise 4.30: Let A be a Turing-recognizable language consisting of descriptions of Turing machines $\{\langle M_1 \rangle, \langle M_2 \rangle, \ldots \}$, where every M_i is a decider. Prove that some decidable language D is not decided by any decider M_i whose description appears in A. (Hint: you may find it helpful to consider an enumerator for A.)

5. (grads) exercise 4.17 (2nd ed) or 4.18 (3rd ed): Let C be a language. Prove that C is Turing-recognizable if and only if a decidable language D exists such that

$$C = \{ x \mid \exists y \ (\langle x, y \rangle \in D) \}.$$

note: In the text this is a starred (difficult) problem. It should not be, and is important in understanding the Turing-recognizable (\equiv recursively enumerable) languages. It has also an important analogy in the characterization of NP.

hint (for \Rightarrow): Think of y as the number of steps for which to simulate the TM for C.

1