Scheduling to Minimize Lateness

algorithms
minimize the maximum lateness

• need to schedule a series of n jobs on a single processor
• the i^{th} job requires t_i units of processing time
• ... and has a deadline of d_i
• if job i is scheduled to start at time s, it finishes at $f_i=s+ t_i$
• the lateness of the i^{th} job is $l_i = \max\{0, f_i - d_i\}$
• goal is to minimize $\max\{l_i \mid 1 \leq i \leq n\}$
• input: t_1, t_2, \ldots, t_n and d_1, d_2, \ldots, d_n
example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_i</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

schedule by decreasing computation time:

$\begin{align*}
 d_4 &= 9 \\
 d_1 &= 6 \\
 d_5 &= 14 \\
 d_2 &= 8 \\
 d_6 &= 16 \\
 d_3 &= 9 \\
\end{align*}$

\[\text{lateness} = 15 - 9 = 6 \]
optimal: schedule by increasing deadline

\[\begin{align*}
 d_1 &= 6 \\
 d_2 &= 8 \\
 d_3 &= 9 \\
 d_4 &= 9 \\
 d_5 &= 14 \\
 d_6 &= 16
\end{align*} \]

\[\text{lateness} = 10 - 9 = 1 \]
proof of optimality

• suppose there is some other “optimal” schedule that does not satisfy earliest deadline first
• it does not satisfy \(d_1 \leq d_2 \leq \ldots \leq d_n \)
• look for an inversion
• then there must be an \(i \) such that \(d_i > d_{i+1} \) (why does it exist?)
• specifically look for two neighbors that are out of order
• makes proof a bit simpler
• swap jobs \(i \) and \(i+1 \) and show that lateness does not get worse
proof of optimality - continued

• we swap jobs i and $i+1$ where $d_i > d_{i+1}$
• before finish and lateness values: f_1, f_2, ..., f_n and l_1, l_2, ..., l_n
• after finish and lateness values: f'_1, f'_2, ..., f'_n and l'_1, l'_2, ..., l'_n
• note: by swapping adjacent jobs, other finish times don’t change
• ... so $f_j = f'_j$ for all $j \neq i$ or $i+1$
• small note: we assume that in original schedule, one job starts as soon as another finishes
• GOAL: show that $\max\{ l'_i, l'_{i+1} \} \leq \max\{ l_i, l_{i+1} \}$
• this is enough since other lateness values don’t change
making the swap of jobs i and i+1

• before: job i starts at time (say) s
• before: \(f_i = s + t_i \) and \(f_{i+1} = s + t_i + t_{i+1} \)
• before: and \(l_{i+1} = s + t_i + t_{i+1} - d_{i+1} \)

• after: \(l'_{i} = f'_{i} - d_{i+1} = s + t_{i+1} - d_{i+1} \leq s + t_{i+1} + t_i - d_{i+1} = l_{i+1} \)
• after: \(l'_{i+1} = f'_{i+1} - d_i = f_{i+1} - d_i \leq f_{i+1} - d_{i+1} = l_{i+1} \)
• ... (since \(f_{i+1} = f'_{i+1} \) and \(d_i > d_{i+1} \))

• Therefore: \(\max\{ l'_{i}, l'_{i+1} \} \leq l_{i+1} \leq \max\{ l_{i}, l_{i+1} \} \) (done!)
l_i, d_i, f_i, t_i, \leq, \neq