Dijkstra’s Method
overview

- single source shortest path
- no negative edge weights

Start with node s at distance 0
- $S=\emptyset$ will be the set of nodes whose distances are known
- all other nodes have distance ∞

Repeatedly
- find node $u \in V-S$ whose shortest path estimate is minimum
- add u to S
- relax all edges leaving u
relaxing an edge

relax(u,v)
 if u.dist + W[u,v] < v.dist
 then
 v.dist = u.dist + W[u,v]
 v.prev = u
input: graph G, weight function W, start node s

initialize:
all distances to ∞, except s.dist=0
set $S=\emptyset$
priority queue Q containing all of V

while Q not empty
 $u = Q$.extractMin
 $S = S \cup \{u\}$
 for each $v \in \text{adj}[u]$
 relax(u,v) -- involves decreaseKey on Q
time just like Prim’s

- depends on priority queue implementation
- set can be represented with a vector
- V inserts and extractMin’s
- E decreaseKey’s
- binary heap: $O((V+E) \log V)$
- fibonacci heap: $O(V \log V + E)$
example graph
greedy methods need greedy proof

- define $\delta(s,v)$ to be the length of the shortest path from s to v
- ... which may be different from v.dist, which is the shortest path found so far

one loop invariant:
 at the start of each iteration of the while loop, v.dist = $\delta(s,v)$ for all $v \in S$
better loop invariant
(can you see why?)

loop invariant: at the start of each iteration of the while loop

(i) for all $v \in S$, $v.dist = \delta(s,v)$
(ii) for all $v \notin S$, $v.dist$ is the length of the shortest path from s to v, all of whose intermediate vertices are in S
If u is an intermediate vertex on the shortest path from s to v, then that part of the path from s to u is the shortest path to u.

In this context (no negative edge weights) $\delta(s,u) < \delta(s,v)$
correctness using that invariant

• assume the invariant (parts (i) and (ii)) at the beginning of the loop
• let \(u \) be the chosen vertex with minimum \(u.d\text{dist} \)
• we proceed by contradiction ….
• assume that \(u.d\text{dist} \) is not the shortest path, that is, \(\delta(s,u) < u.d\text{dist} \)
• continuing, with $\delta(s,u) < u.dist$
• part (ii) of invariant says that $u.dist$ is the shortest path to u with intermediate vertices in S
• so the actual shortest path to u includes vertices not in S
• let y be the first vertex on that path not in S
• by the basic fact, that is the shortest path to y
• since intermediate vertices to y are in S, part (ii) of the loop invariant gives $\delta(s,y) = y.dist$
the situation

S (the set, in blue)

curved line is path
straight line is edge
y is first node outside set S

punch line:
y.dist = \delta(s,y) < \delta(s,u) < u.dist
concluding correctness

- since \(y.\text{dist} = \delta(s,y) < \delta(s,u) < u.\text{dist} \), \(u \) would not have been the vertex chosen
- so by contradiction, if \(u \) was chosen then
 \[\delta(s,u) = u.\text{dist} \]
- to prove part (ii) we use part (i) and the correctness of the relax method (skipped here)