Assignment 2

due Friday, January 31, 2020

1. exercise 12, p 112
2. exercise 7, p 191-192
3. exercise 15, p 196

4. In class we spoke about the uses of a maximum matching to some other settings. Here is one: suppose we have a collection of \(n \) bricks \(B_1, B_2, \ldots, B_n \). We know that we can stably set one brick \(B_i \) on top of another brick \(B_j \) based on their dimensions. \(B_i \) would have to be sufficiently “smaller” then \(B_j \) for it to be stable - this will be built into a function \(\text{STACKONTOP}(i, j) \), which returns true iff \(B_i \) can be safely (=stably) put on top of \(B_j \). Note that

- \(\text{STACKONTOP}(i, i) \) is false
- if \(\text{STACKONTOP}(i, j) \) is true, then \(\text{STACKONTOP}(j, i) \) is false (on the other hand, they could both be false)
- if \(\text{STACKONTOP}(i, j) \) and \(\text{STACKONTOP}(j, k) \) are true, then \(\text{STACKONTOP}(i, k) \) is true

Our goal is to determine the smallest number \(1 \leq k \leq n \) of piles such that we can stack all \(n \) bricks into \(k \) piles. A pile of bricks can be as high as \(n \), and each brick must be stable on top of the one below it (there is no restriction for the one on the bottom).

To this end, we construct a bipartite graph \(G \) consisting of vertices \(V = L \cup R \) where \(L = \{b_1, b_2, \ldots, b_n\} \) and \(R = \{b'_1, b'_2, \ldots, b'_n\} \). The edge set consists of all \((b_i, b'_j) \) where \(\text{STACKONTOP}(i, j) = \text{true} \). Suppose that \(m \) is the size of a maximum matching in \(G \) (you do not need to give an algorithm that determines \(m \)). Show how to determine \(k \) from \(m \), and justify this choice.