1. (question 4 from chap 10 of Er) Let G be a flow network that contains an opposing pair of edges $u \to v$ and $v \to u$, both with positive capacity. Let G' be the flow network obtained from G by decreasing the capacities of both these edges by $\min\{c(u \to v), c(v \to u)\}$. In other words:

- if $c(u \to v) > c(v \to u)$, change the capacity of $u \to v$ to $c(u \to v) - c(v \to u)$ and delete $v \to u$.
- if $c(u \to v) < c(v \to u)$, change the capacity of $v \to u$ to $c(v \to u) - c(u \to v)$ and delete $u \to v$.
- if $c(u \to v) = c(v \to u)$, delete both $u \to v$ and $v \to u$.

(a) Prove that every maximum (s, t)-flow in G' is also a maximum (s, t)-flow in G. (Thus, by simplifying every opposing pair of edges in G, we obtain a new reduced flow network with the same maximum flow value as G.)

(b) Prove that every minimum (s, t)-cut in G is also a minimum (s, t)-cut in G' and vice versa.

(c) (for 513) Prove that there is at least one maximum (s, t)-flow in G that is not a maximum (s, t)-flow in G'.
