CIS 410/510:
Isosurfacing
Project 4

• Assigned today, due Jan 30\textsuperscript{th} (→ 6am Jan 31\textsuperscript{st})
• Worth 7\% of your grade
• Provided for you:
  – Code skeleton online
  – Correct answers provided
• What to upload to Canvas:
  – source code
  – screenshot with:
    • text output on screen
    • image of results
Project 4 in a nutshell

• Do some vector LERPing
• Do particle advection with Euler steps
• Examine results
Project 4 in a nutshell

• Implement 3 methods:
  – EvaluateVectorFieldAtLocation
    • LERP vector field. (Reuse code from before, but now multiple components)
  – AdvectWithEulerStep
    • You know how to do this
  – CalculateArcLength
    • What is the total length of the resulting trajectory?
Project 4G (510 only!!) in a nutshell

• Implement Runge-Kutta 4
• Assess the quality of RK4 vs Euler
• Open ended project
  – I don’t tell you how to do this assessment
    • You will need to figure it out
    • Multiple right answers
• Deliverable: short report (~1 page) describing your conclusions and methodology
  – Pretend that your boss wants to know which method to use and you have to convince them which one is the best and why
• Not everyone will receive full credit
Quiz 1: Tuesday Feb 4th

- Will derive directly from Project 4
  - Euler advection steps
- Will be proctored by Roba
- No other lecture
- Closed book. No notes, calculators, internet, etc.
Height field over a terrain
Height field over a terrain
Transparent grey plane at fixed elevation (height=20)
Rendering just the intersection of the plane and the height field
Projecting the “height = 20” lines back to 2D space

These lines are called isolines.

Isolines represent a region where the field is constant.

The isovalue for this plot is 20.
Plotting both isolines and height

Have you ever seen a plot like this before? Where?
Elevation Map of a Shield Volcano

Activity 3. Topographic Profile of a Shield Volcano

Mauna Loa Volcano, Island of Hawaii
Neat Project for Understanding Isolines
Neat Project for Understanding Isolines

Activity 3. Topographic Profile of a Shield Volcano

Mauna Loa Volcano, Island of Hawaii

classroomcompulsion.blogspot.com
Isolines vs Isosurfaces

• Isolines:
  – Input: scalar field over 2D space
  – Output: lines

• Isosurfaces:
  – Input: scalar field over 3D space
  – Output: surface

• Commonalities:
  – Reduce topological dimension by 1
  – Produce output where scalar field is constant
Isosurface of temperature from star explosion simulation
Iterating Over Cells

• For isosurface/isoline calculation, we can iterate over the cells.
• At the end, we take the results from each cell and put them into a single scene.
First isoline calculation

Goal: calculate isoline for field=0.5.

Quiz: do you have all the information you need?

Quiz: draw this graph and sketch the isoline.
10x10 sampling of the field

Colors:
>0.5: red
<0.5: blue

What observations can we make from this sampling?
100x100 sampling of the field

Colors:
>0.5: red
<0.5: blue
0.5: white

What observations can we make from this sampling?
Per pixel sampling of the field

Colors:
>0.5: red
<0.5: blue
0.5: white

What observations can we make from this sampling?
Isolines

• Correct isoline appears to be close to a quarter circle around (0,0) of radius 0.5.

• Quiz: How would we represent this quarter circle?

Colors:
>0.5: red
<0.5: blue
0.5: white
Reality Check: context for isolines

• We have millions of cells

• If one cell can produce tens or hundreds of lines, then the isolines could take much more memory than the input data set
Quiz

• You want to understand which will take more memory: the isolines or the input data set.
• What facts do you need to know?
Quiz answer

• You want to understand which will take more memory: the isolines or the input data set.
• What facts do you need to know?
• Need to know:
  – How much data per cell
  – How much data per isoline in a cell
  – How many cells contain isolines
How many cells contain isolines?

This cell contains isolines if the isovalue is between 0 and 1. Otherwise, it does not.

This question is data dependent & then depends on the isovalue.
How much data per isoline in a cell?

Straight lines are easy to represent. The memory for the correct answer is variable.
Big picture: what do we want from our isosurface?

- Tractable computation
  - Can’t create 100s or 1000s of line segments per cell for super-accurate representation

- Continuous surface
  - Triangles (or lines for isolines) need to connect up ... no gaps.
Big idea #1: approximate the isolines / isosurface

• Isolines: represent them with a minimal # of segments
• Isosurface: represent them with a minimal # of triangles
Quiz: how to approximate our “quarter circle”?
Big picture: what do we want from our isosurface?

- Tractable computation
  - Can’t create 100s or 1000s of line segments per cell for super-accurate representation
- Quiz: did we accomplish this?
  - Yes: very few per cell
- Continuous surface
  - Triangles (or lines for isolines) need to connect up ... no gaps.
- Quiz: did we accomplish this?

Answer: we got the answer exactly right at the edge of the cell ... hence no gaps. 😊
Effect of different isovalues

What are the similarities between these pictures?

Assume this cell layout

\( X:0 \rightarrow 1, \ Y:0 \rightarrow 1, \ F(0,0) = 0, \ F(1,0) = F(1,1) = F(0,1) = 1 \)

Quiz: write pseudocode to calculate the isoline for any \( V, \ 0 < V < 1 \)
Assume this cell layout
\[ X:0 \rightarrow 1, \ Y:0 \rightarrow 1, \ F(0,0) = 0, \ F(1,0) = F(1,1) = F(0,1) = 1 \]

Quiz: write pseudocode to calculate the isoline for any \( V, 0 < V < 1 \)

Answer: \{ return ((V, 0), (0, V)); \}

Field = 0.25
Field = 0.7
Field = 0.9
Consider arbitrary layout

\[ F(0,0) = A \quad F(0,1) = C \quad F(1,0) = B \quad F(1,1) = D \]

\[ A < V \quad V < B \quad V < C \quad V < D \]

\[(V == \text{isovalue})\]

Note that the mesh coordinates are pretty simple … you will need to take real coordinates into account.

Where is isoline?
Consider arbitrary layout

F(0,0) = A
F(1,0) = B
F(0,1) = C
F(1,1) = D

A < V
V < B
V < C
V < D
(V == isovalue)

Where is isoline?

P1 = (x,0)
P2 = (0,y)
Quiz:
What are x and y?

t = (V-A)/(B-A)
x = 0+t*(1-0)
t = (V-A)/(C-A)
y = 0+t*(1-0)
Claim: we understand one case

• Case “1”:
  – $F(P_0) < V$
  – $V < F(P_1)$
  – $V < F(P_2)$
  – $V < F(P_3)$

• Quiz: how many cases are there?

• Answer:
  – 2 possible states for each point $P$: $F(P) < V$ or $V < F(P)$
    • (note we ignore $F(P) == V$ for today)
  – 4 vertices, so ... $2^4 = 16$ cases
    • Some cases are similar to each other
The 16 cases
We explored case 14
Quiz: write down cases #s that are similar to case 14
Quiz: how many different groupings are there?
Quiz answer:
There are 4 groupings
Problem case: ambiguity!!

Solution: just pick one and go with it.
Physical interpretation of ambiguity

One way connects them up, the other separates them. What’s right?
Big idea #2: pre-computation of all cases

If you knew which case you had, then you would know how to proceed

• Pre-compute correct answers for all 16 cases and store them in a lookup table
• For each cell, identify which case it is in
• Then use corresponding lookup table to generate isosurface
Big idea #2: pre-computation of all cases

If you knew which case you had, then you would know how to proceed

- Pre-compute correct answers for all 16 cases and store them in a lookup table
- For each cell, identify which case it is in
- Then use corresponding lookup table to generate isosurface
Pre-compute correct answers for all 16 cases and store them in a lookup table

- Observations about correct answers for a case:
  - It contains one or two line segments
  - The ends of the line segments are always along edges.
Pre-compute correct answers for all 16 cases and store them in a lookup table

• The ends of the line segments are always along edges.
  – We will need to number the edges
Pre-compute correct answers for all 16 cases and store them in a lookup table

• Correct answer for this case:
  – There is one line segment
  – That line segment has end points on edge 0 and edge 3
Big idea #2: pre-computation of all cases

- Pre-compute correct answers for all 16 cases and store them in a lookup table
- For each cell, identify which case it is in
- Then use corresponding lookup table to generate isosurface

If you knew which case you had, then you would know how to proceed
For each cell, identify which case it is in

- 4 vertices
- Each has one of 2 possible classification values
  - Lower than isovalue
    - Call this “0”
  - Higher than isovalue
    - Call this “1”
  - (ignore equality case)

Quiz: write down classification value for each vertex
For each cell, identify which case it is in

- **Goal:** turn classification values into a number
  - Number should be between 0 and 15

- **Idea:** use binary numbers
  - $V_3V_2V_1V_0 \rightarrow 1110 \rightarrow 14$

This is case 14
The 16 cases
Big idea #2: pre-computation of all cases

If you knew which case you had, then you would know how to proceed

- Pre-compute correct answers for all 16 cases and store them in a lookup table
- For each cell, identify which case it is in
- Then use corresponding lookup table to generate isosurface
Then use corresponding lookup table to generate isosurface

```c
int numSegments[16];
numSegments[0] = 0;
...
numSegments[6] = 2;
...
numSegments[14] = 1;
numSegments[15] = 0;
```
Then use corresponding lookup table to generate isosurface

```c
int lup[16][4]; // lup == lookup
lup[0][0] = lup[0][1] = lup[0][2] = lup[0][3] = -1;
...
lup[6][0] = 0; lup[6][1] = 1; lup[6][2]=2; lup[6][3] = 3;
...
lup[14][0] = 0; lup[14][1] = 3; lup[14][2] = lup[14][3] = -1;
```
Then use corresponding lookup table to generate isosurface

```cpp
int icase = IdentifyCase(cell); // case is a reserved word in C++
int nsegments = numSegments[icase];
for (int i = 0; i < nsegments; i++)
{
    int edge1 = lup[icase][2*i];
    float pt1[2] = // Interpolate position along edge1
    int edge2 = lup[icase][2*i+1];
    float pt2[2] = // Interpolate position along edge2
    AddLineSegmentToOutput(pt1, pt2);
}
```
Upcoming

• Review 2D
• Extensions for 3D
• More discussion of isosurface calculation