Color
Project 2: Field Evaluation

• Assigned today, prompt online
• Due Sunday January 19 midnight (→ 6am January 20th)
• Worth 5% of your grade
• I provide:
 – Code skeleton online
 – Correct answers provided
• What you upload to Canvas? ... your source code
• Note: Project 3 coming on Thursday.
Project 2: Field Evaluation

- Basic idea: for point P, find F(P)
- Important: will be on 2D rectilinear meshes, so cell location is easier

Strategy in a nut shell:
- Find cell C that contains P
- Find C’s 4 vertices, V0, V1, V2, and V3
- Find F(V0), F(V1), F(V2), and F(V3)
- Find locations of V0, V1, V2, and V3
- Perform bilinear interpolation to location P
Cell location for project 2

• Traverse X and Y arrays and find the logical cell index.
 – X={0, 0.05, 0.1, 0.15, 0.2, 0.25}
 – Y={0, 0.05, 0.1, 0.15, 0.2, 0.25}
• (Quiz) what cell contains (0.17,0.08)?
 = (3,1)
“Today’s Lecturer”: Kristi Potter

- Previous:
 - B.S., Univ. of OR: CIS & Fine Arts
 - Ph.D., Univ. of Utah
 - Professional Researcher, Univ. of Utah

- Current:
 - Scientific Programmer, CASSPR, Univ. of OR
 - Courtesy position, CIS
 - Co-founder, CDUX
 - Campus “visualization evangelist”

- Research expertise:
 - Scientific visualization, esp. visualization of ensembles and uncertainty visualization
Physics of Light
The Electromagnetic Spectrum

<table>
<thead>
<tr>
<th>Gamma Rays</th>
<th>X-Rays</th>
<th>Ultraviolet Rays</th>
<th>Infrared Rays</th>
<th>Radar</th>
<th>FM</th>
<th>TV</th>
<th>Shortwave</th>
<th>AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{-14}</td>
<td>1×10^{-12}</td>
<td>1×10^{-8}</td>
<td>1×10^{-4}</td>
<td>1×10^{-2}</td>
<td>1×10^{2}</td>
<td>1×10^{4}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wavelength (in meters)

Visible Light

<table>
<thead>
<tr>
<th>Wavelength (in meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×10^{-7}</td>
</tr>
</tbody>
</table>

High Energy | Low Energy
The Visible Spectrum

human visual system sensitive to ~380-780 nm
Isaac Newton

- white light is a combination of all colors of the spectrum
- black is the absence of visible spectrum wavelengths
- separation of visible light into colors is called dispersion

objects appear colored by the character of the light they reflect
Images
Background on Images

• Definitions:
 – Image: 2D array of pixels
 – Pixel: A minute area of illumination on a display screen, one of many from which an image is composed.

• Pixels are made up of three colors: Red, Green, Blue (RGB)

• Amount of each color scored from 0 to 1
 – 100% Red + 100% Green + 0% Blue = Yellow
 – 100% Red + 0% Green + 100% Blue = Purple
 – 0% Red + 100% Green + 100% Blue = Cyan
 – 100% Red + 100% Blue + 100% Green = White
Background on Images

• Colors are 0->1, but how much resolution is needed? How many bits should you use to represent the color?
 – Can your eye tell the difference between 8 bits and 32 bits?
 – → No. Human eye can distinguish ~10M colors.
 – 8bits * 3 colors = 24 bits = ~16M colors.

• Red = (255,0,0)
• Green = (0,255,0)
• Blue = (0,0,255)
How to organize a struct for an Image (i.e., 3D arrays)

• 3D array: width * height * 3 color channels

• Color:
 – Choice 1: RGB struct
 • struct rgb { unsigned char r, g, b; };
 • int npixels = width*height;
 • struct RGB *buffer = new RGB[npixels];
 • int p = 21456; // random pixel in the buffer
 • buffer[0].r = 255; buffer[0].g = 0; buffer[0].b = 0;
 – Choice 2: just 3 unsigned chars
How to organize a struct for an Image (i.e., 3D arrays)

• 3D array: width * height * 3 color channels

• Color:
 – Choice 1: RGB struct
 – Choice 2: just 3 unsigned chars
 • int npixels = width*height;
 • unsigned char *buffer = new unsigned char [3*npixels];
 • int p = 21456; // random pixel in the buffer
 • buffer[3*p+0] = 255; buffer[3*p+1] = 0;
 • buffer[3*p+2] = 0;
Project 3 Uses Images

• For project 3, I am doing the management of the buffer
 – I do choice 2
• But you will write functions that work on one pixel
• void AssignValue (unsigned char *pixel)
 {
 pixel[0] = 255; pixel[1] = 0; pixel[2] = 0;
 }
• My code:
 – for (int i = 0 ; i < npixels ; i++) AssignValue(buffer+3*i);
Your Amazing Eyes
Crazy numbers about your eyes (with possibly some exaggeration)

• What is the pixel resolution of your eyes?

 50* MegaPixels
 (* = different parts of the eye work differently; 50M pixel is an aggregation)

• What is the frequency your eyes take in information?

 ~20* Hertz
 (* = for VR, 90Hz is sometimes needed. For video games, 30Hz almost always sufficient)

50MegaPixels x 20HZ → your eyes can take in 1GB of data per second
This is why visualization is king for understanding data.
Pseudocolor plot

• First visualization technique we will learn
• Idea: take a scalar field on a mesh and transform it to colors
• Two elements:
 – Define a map
 – Apply the map
Pseudocolor plot

• First visualization technique we will learn
• Idea: take a scalar field on a mesh and transform it to colors
• Two elements:
 – Define a map
 – Apply the map
Color map example (“discrete”)

- Example below defines the color for scalar values between 0 and 1.29
- Grouped in 13 ranges (“discrete”)
Color map example ("continuous")

- Example below defines the color for scalar values between -0.10 and 0.10
- No groupings ("continuous")
- This color map appears to have a fixed number of colors, and then blends between those colors
 - Red, yellow, green, cyan, blue
 - (This is not immediately obvious)
Pseudocolor plot

• First visualization technique we will learn
• Idea: take a scalar field on a mesh and transform it to colors
• Two elements:
 – Define a map
 – Apply the map
Pseudocolor plot

• Defined:
 – Create a mapping, M, from scalar values to colors
 – For each pixel:
 • Evaluate \(V \), the scalar field at that pixel location
 • Obtain color \(C \), by applying M to \(V \)
 – \(C = M(V) \)
 • Assign the pixel color to be \(C \)
Example pseudocolor plot (discrete color map)

Mean Daily Average Temperature
Source: Climate Atlas of the United States
Pseudocolor in practice

• The normal way:
 – Data set is composed of triangles
 – Apply color map to each vertex in the triangle
 – Tell graphics hardware to render each triangle (including color at each of three vertices)
 – Graphics hardware does the work of interpolating color at each pixel
Pseudocolor NOT in practice

• An unusual way:
 – Assume data perfectly overlaps with image
 • Bottom left of data in bottom left pixel
 • Upper right of data in upper right pixel
 – For each pixel
 • Find corresponding spatial location
 • Evaluate scalar field
 • Apply color map
 • Assign pixel

• In effect: doing what graphics card does in software
• And: this is what we will do in Project 3
Choosing Colors
Color Illusions
Equiluminant Colors

- strong contrast
 shapes to be seen by color sensitive cells
- equiluminance
 hides positions from light sensitive cells
- flickering/movement caused by this disconnect
Here’s the better one
Color Spaces
RGB

Red, Green, Blue channels
- electron guns of CRT monitors
CMYK

subtractive
- Cyan, Magenta, Yellow, Key (black)
- inks used in printing
- assumes white paper (non-existence of ink)
- often required for paper publications
- device dependent
HSV \([B, L, I]\)

additive

- **Hue**, **Saturation**, \([\text{Value}, \text{Brightness}, \text{Lightness}, \text{Intensity}]\)
- polar coordinate representations of RGB space
- conical or cylindrical shaped space
- more intuitive than RGB for color tuning
CIE LAB/LUV

mathematically defined, perceptually based
- Commission Internationale de l'éclairage)
- Lightness, (a,b)/(u,v) color opponent dimensions
 a: blue/yellow, b: green/red
 lightness (0% black, 100% white)
- space includes all perceivable colors
 (gamut greater than RGB, CMYK)
- device independent
RGB to HSV C++ (ish)

```c
// in: rgb(0.0,1.0) out: h(0,360), v(0.0,1.0), s(0.0,1.0)
rgb2hsv(float r, float g, float b)
    // find the min and max of rgb
    maxColor = max(r, g, b);
    minColor = min(r, g, b);
    float delta = maxColor - minColor;
    float Value = maxColor;
    float Saturation = 0;
    float Hue = 0;
    if (delta == 0)
        Hue = 0; Saturation = 0;
    else
        Saturation = delta / maxColor;
    float dR = 60.f*(maxColor - r)/delta + 180.0;
    float dG = 60.f*(maxColor - g)/delta + 180.0;
    float dB = 60.f*(maxColor - b)/delta + 180.0;
    if (r == maxColor)
        Hue = dB - dG;
    else if (g == maxColor)
        Hue = 120 + dR - dB;
    else
        Hue = 240 + dG - dR;
    if (Hue < 0)
        Hue+=360;
    if (Hue >=360)
        Hue-=360;
```
HSV to RGB

```cpp
// in: h(0,360), v(0.0,1.0), s(0.0,1.0) out: rgb(0.0,1.0)

hsvToRGB(float hue, float saturation, float value)
  if( saturation == 0 ) // achromatic (grey)
    r = g = b = v;
  else{
    hue /= 60.f;
    // sector 0 to 5
    i = floor( hue );
    f = hue - i;
    // factorial part of h
    p = value * ( 1 - saturation);
    q = value * ( 1 - saturation * f );
    t = value * ( 1 - saturation * ( 1 - f ) );
    switch( i ):
      case 0: r = v; g = t; b = p;
      case 1:    r = q; g = v; b = p;
      case 2:    r = p; g = v; b = t;
      case 3:    r = p; g = q; b = v;
      case 4:    r = t; g = p; b = v;
      case 5:    r = v; g = p; b = q;
  }
```
Problems with Color

(short list)
Misused Color

“Color used poorly is worse than no color at all.”
-Edward Tufte

- bias a reader’s perception
- cause the wrong information stand out
- hide meaningful information
- cause visual clutter and overload
Color Coding

- hard to pick discernible colors
- can only get ~12 distinguishable colors
- object size, line width can influence perception

William S. Cleveland and Robert McGill.
Rainbow Colormaps

- not ideal for qualitative data
- no inherent ordering (by wavelength?)
- transitions between colors are uneven
- mapping of changing value may not equal the change we see
How The Rainbow Color Map Misleads - Eagereyes

Jul 7, 2013 - The rainbow color map is based on the colors in the light spectrum, and is sometimes done correctly, sometimes the colors are in the wrong order. The Eastern half seems to be all dark green and blue, while the Western half is all light greens, yellow and orange. Surely, there is a huge difference between the two.

The Rainbow color map | ROOT a Data analysis Framework

Definition. The rainbow color map is named that way because it goes through all the rainbow colors. The lower values are in the deep blue range and the higher values in the reds. In between passes through light blue green, yellow, orange ...

Rainbow Color: How the rainbow color map ... From a rainbow color map ...

Turbo, An Improved Rainbow Colormap for ... - Google AI Blog

Aug 20, 2019 - However, the choice of color map can have a significant impact on a given For example, interpretation of "rainbow maps" have been ...

Rainbow Color Map (Still) Considered Harmful - Semantic ...

by D Borland - 2007 - Cited by 406 - Related articles

Rainbow Color Map (Still) Considered Harmful - IEEE Xplore

by D Borland - 2007 - Cited by 406 - Related articles

Mar 5, 2007 - In this article, we reiterate the characteristics that make the rainbow color map a poor choice, provide examples that clearly illustrate these ...

Rainbow Colormaps - What are they good for? Absolutely ...

Aug 21, 2012 - This post is based on information given to me by my PhD-supervisor/anti-rainbow-colormap activist Chari Botha. I'll start off by explaining why ...

Rainbow Color Map (Still) Considered Harmful

by D Borland - 2007 - Cited by 406 - Related articles

Despite much published research on its deficiencies, the rainbow color map is prevalent in the visualization community. The authors present survey results ...
Best Practices
If you want objects to look the same color, make background colors consistent.
If you want objects to be easily seen, use a background color that contrasts sufficiently.
Use color only when needed to serve a particular communication goal.
Use different colors only when they correspond to differences of meaning in the data.
Use soft, natural colors to display most information and bright and/or dark colors to highlight.
Stick with a monochromatic color scheme when encoding quantitative values.
Non-data components should be displayed just visibly enough to perform their role.
To accommodate for the colorblind, avoid using a combination of red and green in the same display.

Vischeck/Daltonize
http://www.vischeck.com/
Tips
Color Schemes

- monochromatic
 variations in lightness & saturation of a single color
- analogous
 colors adjacent on the color wheel
- complementary
 two colors opposite on the color wheel
Look to Nature
Simplicity

- choose one color to be used in larger amounts
- be selective about the base color
- use other colors to add interest
Avoidance of Color

- use neutrals (work with any scheme)
 black, white, grey
- use diagrammatic marks (may be better encoding channels)
 size, shape, texture, length, width, orientation, curvature and intensity
Tools for Color Scheme Creation
Kuhler

http://kuler.adobe.com
- pick a previously created “theme”
- create a theme from color model
- create a new theme from an image
Color Scheme Designer

http://colorschemedesigner.com
- develop scheme based on a color model
- test out scheme on light and dark pages
Color Brewer

http://colorbrewer2.org/
- pre-defined color schemes for maps

 sequential
 optimized for data ordered low to high

 diverging
 place equal emphasis on mid-range and extremes

 qualitative
 does not imply an order (categorical data)
HCL Color Picker

http://tristen.ca/hcl-picker/
- pick equidistant colors in the HCL colorspace
- test color scheme out on a choropleth map
- addresses issues of HSV colorspace
Questions?

References
- Cinematic Color, Jeremy Selan, Siggraph 2012 Course notes
- Measuring Color [Hunt, 1998]
- Color Science [Wyszecki and Stiles, 1982]
- The Science of Art
 (http://www.imprint.co.uk/rama/art.pdf)
- How the Retina Works
 (http://www.americanscientist.org/libraries/documents/20058313632_306.pdf)
- Color Theory Methods for Visualization, Theresa-Marie Rhyne, Vis 2012 Tutorial
Project 3

• Assigned today, prompt online by tonight
• Due Jan 22, midnight (➔ January 3rd, 6am)
• Worth 7% of your grade
• Provide:
 – Code skeleton online
 – Correct answers provided
• You upload
 – source code
• Wrong answers?: <1/2 credit
 – Differencer program available
Project 3 in a nutshell

- I give you a 2D data set.
- You will produce 3 images that are 500x500 pixels.
- The 2D data set will be mapped on to the pixels.
- Pixel (0,0): X=-9, Y=-9
- Pixel (499, 0): X=+9, Y=-9, pixel (0,499): X=-9, Y=+9
- Pixel (499,499): X=+9, Y=+9
Project 3 in a nutshell

• For each of the 250,000 pixels (500x500), you will apply 3 color maps to a scalar field