\[f(n) = \frac{\log (n^2 - \log n)}{\log n} + \frac{\log ^2 \left(\frac{n}{2} + \sqrt{n} \right)}{\log ^2 (n)} \]

\[= \Theta \left(\log n \right) \]
\(n > 0 \)
out: \(n \frac{(n+1)}{2} \)

- **Init**
 - \(S = 0 \)
 - \(k = 0 \)
- **Loop**
 - While \(k \leq n + 1 \)
 - \(S = S + k \)
 - \(k = k + 1 \)
- **End**
 - returns \(S \)

\[f: k \leq n + 1 \]

\[a: 0 \leq k \leq n + 1 \]

\[S = \frac{k(k-1)}{2} \]

Correctness Proof:

1. **Init**: Want: \(k \) is correct at the beginning.
 - We have:
 - At the beginning: \(S = 0 \), \(k = 0 \)
 - \(0 \leq k \leq n + 1 \) \(\checkmark \)
 - \(S = \frac{k(k-1)}{2} \) \(\checkmark \) \(\text{but } S = k = 0. \)

2. **Maintain in one step**:
 - Want: If \(\alpha \) and \(\gamma \) are correct
 - then \(\delta \) is still correct after one iteration of the While loop.

\[\text{ble } \alpha \text{ and } \gamma \text{ are correct } < k \leq n + 1 (\beta) \]

after one step of While, call \(S, k' \): new values of \(S \) and \(k' \).
Due to

While loop:

need to show:

\[
\frac{0 \leq k' \leq n+1}{\iff}
\]

\[
S' = \frac{k'(k'-1)}{2}
\]

\[
S = \frac{k(k+1)}{2}
\]

\[
k' = k+1 > 0
\]

\[
k' = k+1 < n+2 \rightarrow k' \leq n+1
\]

\[
S' = S + k = \frac{k(k+1)}{2} + k = \frac{k^2}{2} + k = \frac{k^2 - k + 2k}{2}
\]

3. Termination step:

- Show the loop will terminate

- \[
T \Rightarrow x \rightarrow S = \frac{n(n+1)}{2}
\]

From \(T \): we have: \(k > n+1 \Rightarrow k = n+1 \)

From \(x \): \(0 \leq k \leq n+1 \)

\[
S = \frac{(n+1)(n+1-1)}{2} = \frac{n(n+1)}{2}
\]

Done!
\[n = b[0].2^0 + b[1].2^1 + \cdots + b[k].2^k \]