CIS 313: Intermediate Data Structure

week of March 9
theme

• Sorting
• Order statistics
merge sort

1. break list of n elements into two halves (time $O(1)$)
2. recursively sort each half (time $T(n/2)+T(n/2)$)
3. merge the two sorted lists (time $O(n)$)

• total time $T(n) = 2T(n/2) + O(n)$
• this can be shown to be $T(n) = O(n \ lg n)$
• master method (powerful) can solve recurrence relations
The Master Method

If \(T(n) \leq aT\left(\frac{n}{b}\right) + O(n^d) \)
then
\[
T(n) = \begin{cases}
O(n^d \log n) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]

more general and complicated version in text

\(a > 0, b > 1, d \geq 0 \)
quicksort: "dual" version of merge sort

1. "unmerge" the array
 1. use Partition method
 2. break into "halves" of small elements and large elements
 3. of course, they may not be same size, just hope so
2. sort each side recursively
3. put the two sides together (no work involved here)

• Partition is O(n)
• total is O(n^2) worst case
• but O(n \lg n) on average
Partition: the key method

\[
\text{PARTITION}(\text{array } A, \text{ int } p, \text{ int } r)
\]

1. \(x \leftarrow A[r] \) \hspace{1cm} \triangleright \text{ Choose pivot}
2. \(i \leftarrow p - 1 \)
3. \textbf{for } j \leftarrow p \textbf{ to } r - 1
4. \hspace{1cm} \textbf{do if } (A[j] \leq x)
5. \hspace{2cm} \textbf{then } i \leftarrow i + 1
6. \hspace{1cm} \text{exchange } A[i] \leftrightarrow A[j]
7. \text{exchange } A[i + 1] \leftrightarrow A[r]
8. \textbf{return } i + 1
Partition: observation

• in place operation
 • merge requires workspace
 • then need to copy items back into array

• single pass

• can choose other elements for pivot
 • median of first, last, middle elements
 • choose random location in \([p,r]\), use element there as pivot
 • that’s Randomized-Partition
 • highly recommended
what partition does

\[\begin{array}{ccc}
 p & q & r \\
 \text{unsorted elements} & \\
 \text{elements } \leq x & x & \text{elements } > x \\
\end{array} \]

the sizes of the left and right sides depend on the value of \(x \)
quicksort easy with partition

```plaintext
QuickSort(p, r)

if p<r then
    q = Partition(p,r)
    QuickSort(p, q-1)
    QuickSort(q+1, r)
```

quicksort worst case

• suppose partition uses time cn
• let $T(n)$ be the time for quicksort on n elements
• in the worst case, the pivot element is always the largest (or smallest) remaining element
• so $T(n) = cn + T(n-1)$
• expanding $T(n) = cn + T(n-1)$
 = $cn + c(n-1) + T(n-2)$
 = $cn + c(n-1) + c(n-2) + T(n-3)$...
 = $c(n + (n-1) + (n-2) + ... + 1) + T(0)$
 = $cn(n+1)/2 + T(0)$
 = $O(n^2)$
lower bounds

• $O(n \log n)$ seems like a common time bound for sorting
• there is a reason for this
• look at the comparison-based model
• access to data items are only through comparisons of two items
 • is $a \leq b$?
• the more common sorts are comparison based: merge-sort, heap-sort, quick-sort, bubble-sort, etc.
• counting sort is $O(n)$ times (sort of), but it is not comparison-based
 • it uses data item as array index
comparison-based sorts require $n/\lg n$ time

• the $\Omega(n \cdot \lg n)$ lower bound is on the number of comparisons required to sort n items
• use the decision tree model
• a decision tree is a full binary tree
 • internal node represents a comparison between two items
 • left/right branches indicate yes/no outcomes
 • external nodes are the outcomes
• any comparison based sorting algorithm on n elements corresponds to a (BIG!!) decision tree
• height of the tree is the worst case number of comparisons
decision tree example

This tree has $3! = 6$ external nodes, one for each possible outcome of sorting 3 elements.
observations about decision trees

• any decision tree for sorting n items must have at least n! external nodes (outcomes): #outcomes ≥ n!

• a decision tree of (internal) height h has at most \(2^h\) external nodes
 • height h means h+1 comparisons

• combining: \(n! \leq \#\text{outcomes} \leq 2^h\)
• take logs of both sides: \(\lg n! \leq \lg 2^h = h\)

• Stirling’s Approx: \(\lg n! = \lg \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta \left(\frac{1}{n}\right)) = \Theta(n \lg n)\)
aside: avoid Stirling’s Approx

• \(n! = n(n - 1)(n - 2) \cdots 2 \cdot 1 \geq n(n - 1) \cdots \left(\frac{n}{2} + 1\right)\left(\frac{n}{2}\right) \geq \left(\frac{n}{2}\right)^{\frac{n}{2}} \)

• so from previous page...

• \(h = \lg 2^h \geq \lg n! \geq \lg \left(\frac{n}{2}\right)^{\frac{n}{2}} = \left(\frac{n}{2}\right)(\lg n - 1) \)

• conclude: \(h = \Omega(n \lg n) \)
lower bound: conclusion

• theorem 8.1: Any comparison sort algorithm requires $\Omega(n \cdot \log n)$ comparisons in the worst case

• this general technique is called an information theoretic lower bound

• general idea: find number of outcomes, take logarithm

• application: merge 2 sorted lists of n elements, requires n comparisons
exercise 8.1-4 from text

8.1-4
Suppose that you are given a sequence of n elements to sort. The input sequence consists of n/k subsequences, each containing k elements. The elements in a given subsequence are all smaller than the elements in the succeeding subsequence and larger than the elements in the preceding subsequence. Thus, all that is needed to sort the whole sequence of length n is to sort the k elements in each of the n/k subsequences. Show an $\Omega(n \lg k)$ lower bound on the number of comparisons needed to solve this variant of the sorting problem. (Hint: It is not rigorous to simply combine the lower bounds for the individual subsequences.)
linear time sorts

• Counting sort, Radix sort

• for Counting sort, we sort n elements, each in the range 0 to k (k fixed)
 • sometimes k=n
 • use element as array index

• simple version: count the number of items with value i, for $0 \leq i \leq k$
 • use i as index to an array C
 • then for each i print C[i] copies of i
 • problem: i may be a key to larger element, need associated info
COUNTING-SORT \((A, B, k)\)

1. let \(C[0 . . k]\) be a new array
2. for \(i = 0\) to \(k\)
3. \(\quad C[i] = 0\)
4. for \(j = 1\) to \(A.length\)
5. \(\quad C[A[j]] = C[A[j]] + 1\)
6. // \(C[i]\) now contains the number of elements equal to \(i\).
7. for \(i = 1\) to \(k\)
8. \(\quad C[i] = C[i] + C[i - 1]\)
9. // \(C[i]\) now contains the number of elements less than or equal to \(i\).
10. for \(j = A.length\) down to 1
11. \(\quad B[C[A[j]]] = A[j]\)
12. \(\quad C[A[j]] = C[A[j]] - 1\)
example run: $n=8$, $k=5$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$C[i]$ contains the number of elements i

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

$C[i]$ now contains the number of elements $\leq i$

next 3 goes into location 6
radix sort

• sort on last digit (use *stable sort*)
• sort on next to last digit, etc
• old punch card readers did this

• if you have 100 bins, can sort on last two digits
• put into bins 0,1,2,...,99
RADIX-SORT(A,d)
 for i=1 to d
 use stable sort to sort array A on digit i

here each element of A has d digits
• digit 1 lowest order
• digit d highest order

Lemma 8.3
Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in $O(d(n+k))$ time if the stable sort it uses takes $O(n+k)$ time.
Lemma 8.4
Given n b-bit numbers and any positive integer $r \leq b$, RADIX-SORT correctly sorts these numbers in $O((b/r)(n+2^r))$ time if the stable sort it uses takes time $O(n+k)$ time for inputs in the range 0 to k.

Idea:
- break numbers into groups of r bits
- view it as consisting of b/r digits of r bits each
- each digit has value 0 to 2^r
- sort on each digit is $O(n+2^r)$
- done b/r times
1. Consider the use of lemma 8.4 of the text (p 199) to sort \(n \) numbers of \(b \) bits each. Suppose we choose \(b = \log n \log \log n \).

(a) What is the largest integer that can be expressed (in unsigned binary) using \(b \) bits?

(b) If \(r \) is chosen to be \(\log n \), how long does \textsc{RadixSort} take, according to the lemma?

(c) How long does it take if \(r = \log \log n \) is chosen instead?

(d) Which choice of \(r \) is faster?