CIS 313: Intermediate Data Structure

week of Jan 7
Programs = Algorithms + Data Structures
(by Niklaus Wirth)

• From the book
 • Algorithm: any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
 • Data structure: a way to store and organize data in order to facilitate access and modifications.
themes

• computational complexity, start to measure it
• simple data structures (mostly review)
• tree based structures
 • binary trees
 • binary heaps, binomial heaps
 • self adjusting trees: AVL, Red-Black
 • (2,4) trees, B-trees
• sorting, order statistics, voting
First algorithm

find the maximum number in an array

Input: a sequence of numbers $a_1, a_2, ..., a_n$
Output: the maximum number in the input sequence
Algorithm:

```
max = a_1
for i = 2 to n:
    if a_i > max:
        max = a_i
return max
```

How long does this take?
Maybe: n variable assignments, $n-1$ comparisons, $n-2$ increments, one return?
how do we talk about algorithm speed?

• use functions of the size of the input n (typically the number of input numbers/items in this class), i.e., $T(n)$

• apply asymptotic notation for these functions

• it ignores constants and only focuses on the highest-order term
 • why? machine independence, constants not important asymptotically
 • asymptotically = “in the long run or in the limit”

• see description and definitions in text (section 3.1, pp 43-52)

• $O, \Omega, \Theta, o, \omega$
Time spent at 1,000,000 operations per second:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>...</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(10^{-5}) seconds</td>
<td>(2 \cdot 10^{-5}) seconds</td>
<td>(3 \cdot 10^{-5}) seconds</td>
<td>(4 \cdot 10^{-5}) seconds</td>
<td>(5 \cdot 10^{-5}) seconds</td>
<td>(6 \cdot 10^{-5}) seconds</td>
<td>(10^{-4}) seconds</td>
<td></td>
</tr>
<tr>
<td>(n^2)</td>
<td>(10^{-4}) seconds</td>
<td>(4 \cdot 10^{-4}) seconds</td>
<td>(9 \cdot 10^{-4}) seconds</td>
<td>(1.6 \cdot 10^{-3}) seconds</td>
<td>(2.5 \cdot 10^{-3}) seconds</td>
<td>(3.6 \cdot 10^{-3}) seconds</td>
<td>(0.01) second</td>
<td></td>
</tr>
<tr>
<td>(n^3)</td>
<td>(10^{-3}) seconds</td>
<td>(8 \cdot 10^{-3}) seconds</td>
<td>(2.7 \cdot 10^{-3}) seconds</td>
<td>(6.4 \cdot 10^{-2}) seconds</td>
<td>(1.25) second</td>
<td>(2.16) second</td>
<td>(1) second</td>
<td></td>
</tr>
<tr>
<td>(n^{10})</td>
<td>2.7 hours</td>
<td>118 days</td>
<td>18 years</td>
<td>333 years</td>
<td>3,103 years</td>
<td>19,213 years</td>
<td>31,775 centuries</td>
<td></td>
</tr>
<tr>
<td>(2^n)</td>
<td>(10^{-3}) seconds</td>
<td>1 second</td>
<td>17 minutes</td>
<td>12 days</td>
<td>35.7 years</td>
<td>36,634 years</td>
<td>4 \cdot 10^{14} centuries</td>
<td></td>
</tr>
<tr>
<td>(3^n)</td>
<td>(0.06) second</td>
<td>58 minutes</td>
<td>6.5 years</td>
<td>3863 centuries</td>
<td>2 \cdot 10^8 centuries</td>
<td>1.3 \cdot 10^{13} centuries</td>
<td>1.6 \cdot 10^{32} centuries</td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>3.6 seconds</td>
<td>773 centuries</td>
<td>(8 \cdot 10^{16}) centuries</td>
<td>(2.6 \cdot 10^{22}) centuries</td>
<td>(9.7 \cdot 10^{48}) centuries</td>
<td>(2.6 \cdot 10^{66}) centuries</td>
<td>3 \cdot 10^{142} centuries</td>
<td></td>
</tr>
<tr>
<td>(2^{2^n})</td>
<td>(>10^{292}) centuries</td>
<td>(>10^{315637}) centuries</td>
<td>(ouch!)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
big-Oh formally

\[f(n) = O(g(n)) \text{ if and only if (iff)} \]
\[\exists c > 0 \exists N \forall n \geq N \quad 0 \leq f(n) \leq c \cdot g(n) \]

• \(c \) is the dropped constant
• \(N \) is the crossover point so that ...
• ... if \(n \) is big enough \(f \) is bounded above by \(c \cdot g \)
• the growth rate of \(g \) bounds the growth rate of \(f \) from above

example: let \(f(n) = 3n^3 + 5n^2 + n + 17 \)

some true statements:
• \(f(n) = O(n^3) \)
• \(f(n) = O(n^4) \)
• \(f(n) = O(17n^3) \)
• \(f(n) = 3n^3 + O(n^2) \)
Big Omega and Theta

\[f(n) = \Omega(g(n)) \iff \exists c > 0 \exists N \forall n \geq N \ f(n) \geq c \cdot g(n) \geq 0 \]

thus, the growth rate of \(g \) is less than or equal to the growth rate of \(f \) (ignoring the constant)

\[f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \]

• here \(f \) and \(g \) have the same growth rate
• sort of like saying \(A \leq B \) and \(A \geq B \) implies that \(A = B \)

now we can say (\(f(n) = 3n^3 + 5n^2 + n + 17 \))
• \(f(n) = \Omega(n^3) \)
• \(f(n) = \Omega(n^2) \)
• \(f(n) = \Theta(n^3) \)
• \(f(n) = 3 \cdot n^3 + \Theta(n^2) \)
little-oh and little-omega

\[f(n) = o(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]
or
\[\forall c > 0 \exists N \forall n \geq N \; 0 \leq f(n) \leq c \cdot g(n) \]
in other words, the growth rate of \(f \) is strictly less than that of \(g \)

\[f(n) = \omega(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \]
or
\[\forall c > 0 \exists N \forall n \geq N \; f(n) \geq c \cdot g(n) \geq 0 \]
the growth rate of \(f \) is strictly greater than that of \(g \)

examples:
- \(f(n) = o(n^4) \)
- \(f(n) = \omega(n^2) \)
- \(f(n) = 3 \cdot n^3 + o(n^3) \)
- \(\frac{1}{n} = o(1) \)
some properties

- Transitivity:
 \[f(n) = \alpha(g(n)) \text{ and } g(n) = \alpha(h(n)) \implies f(n) = \alpha(h(n)) \quad (\alpha \in \{O, \Omega, \Theta, o, \omega\}) \]

- Reflexivity:
 \[f(n) = \alpha(f(n)) \quad (\alpha \in \{O, \Omega, \Theta\}) \]

- Symmetry:
 \[f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n)) \]

- Transpose Symmetry:
 \[f(n) = O(g(n)) \iff g(n) = \Omega(f(n)) \]
 \[f(n) = o(g(n)) \iff g(n) = \omega(f(n)) \]
common functions

• n^k, where k is a constant (polynomial)
• 2^n, 3^n, c^n (exponential)
• $\log_2 n$, $\log_c n$, $\ln n$ (logarithmic – usually $\log n$ implies base 2)
 • fact: $\log_2 n = O(\log_c n)$ (why?)
• $O(n \log n)$ (also poly, but very common)
• $n!$ (factorial)
• $2^{(\log n)^2}$ (super-poly, sub-exponential) (ok, not so common)
other functions

• factorials: $n! = n \cdot (n - 1) \cdot (n - 2) \cdots 3 \cdot 2 \cdot 1$

• Stirling’s Approximation: $n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta\left(\frac{1}{n}\right))$

• importantly $\log n! = \Theta(n \cdot \log n)$

• binomial coefficients

• Fibonacci sequence: $F_0 = 0, F_1 = 1, F_{k+2} = F_{k+1} + F_k$

• (Fibonacci used for AVL trees)
more examples

\[10 \log n + \log \log n\] is \(O(\log n)\)? \(O(n)\)? \(O(n^{0.0000001})\)? \(\Omega(\log n)\)? \(O((\log n)^{0.5})\)? \(\Omega((\log n)^{0.5})\)

\[2^{3^{2000}}\] is \(O(1)\)? \(\Omega(1)\)? \(2^{3^{2000}} n\) is \(O(n)\)?

\[2/n\] is \(O(1/n)\)? \(O(1/\sqrt{n})\)? \(O(1/n^{1.7})\)? \(O(1)\)?

\[f(n) = \begin{cases}
0.1 n & \text{if } n \text{ is odd} \\
3 n^2 & \text{if } n \text{ is even}
\end{cases}\] is \(O(n)\)? \(O(n^{1.5})\)? \(O(n^2)\)? \(\Omega(n)\)? \(\Omega(n^{1.5})\) \(\Omega(n^2)\)
reading for previous material

• chapter 3
• appendix A.1
loop invariants

• “simple” method to prove correctness of a loop structure
• follows induction
• three phases: *initialization* (base case),
• *invariance maintenance* (induction), and
• *termination*

• look at pp 18-20 of text for more discussion
• while there, look at pp 20-22 for description of pseudo-code
general structure of argument

code:
<init>
while γ
do \mathcal{L}

initialization: show that α is true after the `<init>` phase of the code has been executed

maintenance: show that if $\alpha \land \gamma$ is true, then α will be true after one execution of the loop body \mathcal{L}

termination: the loop finishes when γ is false, so argue that $\neg \gamma \land \alpha$ is the desired outcome

invariant: α
a true/false statement about the variables of the code
example

input: integer $n > 0$
output: $n(n+1)/2$

--initialization
int $s = 0$
int $k = 0$

--loop
while $k < n+1$ do
 $s = s + k$
 $k = k + 1$

--end
return s

γ: $k < n+1$

α:
- $0 \leq k \leq n + 1$
- $s = k(k-1)/2$
example

input: integer n>0
output: integer k, array b of k bits

--initialization
int k=0
int t=n
array b=[] of bit

--loop
while t>0 do
 b[k] = (t mod 2)
 k = k+1
 t = t div 2
--end
return k, b

γ: t>0

α:
• t ≥ 0
• Let $m = \sum_{i=0}^{k-1} b[i] \cdot 2^i$ be the number represented by b in base 2. Then $n = 2^k \cdot t + m$

notice:
• initialization is easy
• termination also easy
• see handout (posted on class site) for full discussion
example

Compute the n-th Fibonacci number