Assignment 1

due Tuesday, Jan 28, 2020

1. Suppose that algorithm A uses $313 \cdot n^3$ operations while algorithm B uses $2 \cdot n^4$ operations. Determine the smallest value N such that A is as fast or faster than B for all $n \geq N$. [4 points]

2. exercise 3.1-2, p 52. Show that for any real constants a and b, where $b > 0$: $(n + a)^b = \Theta(n^b)$. [6 points]

3. exercise 3-2, p 61.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>O</th>
<th>o</th>
<th>Ω</th>
<th>ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $\log^k n$</td>
<td>n^k</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>b. n^k</td>
<td>c^k</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>c. \sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>d. 2^n</td>
<td>$2^{n/2}$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>e. $n^{\lg c}$</td>
<td>$c^{\lg n}$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>f. $\lg(n!)$</td>
<td>$\lg(n^n)$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

 [8 points]

4. An algorithm takes $0.4ms$ for input size 50 (this allows you to determine the constant c, which will be different in each case). What is the largest size of an input that can be solved in one hour if the run time of the algorithm is . . . ?

 (a) $c \cdot n$
 (b) $c \cdot n \log n$ (assuming base 2)
 (c) $c \cdot n^3$
 (d) $c \cdot 2^n$

 [8 points]

5. exercise 2-3, p 41. [8 points]

6. Implement a stack using a single queue. In particular, you are given a queue Q that provides the method $Q.size()$ to return its size at any point and the standard methods of queues (i.e, $Q.enqueue(x)$ and $Q.dequeue()$). The requirement is to use such methods of Q to implement two methods $S.push(x)$ and $S.pop()$ for a stack S. What are the running times of your methods? [6 points]

Total: 40 points

Notes:
• \textit{Hint}: Question 2: You need to show \((n + a)^b = O(n^b)\) and \((n + a)^b = \Omega(n^b)\). In both cases, you can choose \(N = 2|a|\).

• \textit{Hint}: Question 4 b: You don’t have to show the exact value. An interval to bound the value is enough. Try different values to find the interval.

• An \textit{ms} is 1/1000 of a second, also called a millisecond.