Algorithm 1 AveragedPerceptronTrain($D, MaxIter$)

1: function AveragedPerceptronTrain($D, MaxIter$)
2: $w \leftarrow (0, 0, \ldots, 0)$, $b \leftarrow 0$
3: $u \leftarrow (0, 0, \ldots, 0)$, $\beta \leftarrow 0$
4: $c \leftarrow 1$
5: for $iter \leftarrow 1$ to $MaxIter$ do
6: for $(x, y) \in D$ do
7: if $y(wx + b) \leq 0$ then
8: $w \leftarrow w + yx$
9: $b \leftarrow b + y$
10: $u \leftarrow u + yc x$
11: $\beta \leftarrow \beta + yc$
12: end if
13: $c \leftarrow c + 1$
14: end for
15: end for
16: return $w - \frac{1}{c} u, b - \frac{1}{c} \beta$
17: end function

Remember our learning procedure for averaged perceptron (shown in Algorithm 1).

Note that in this procedure, our scan over the training data with different epochs naturally
defines a sequence of the training data examples. We will call it the data sequence and denote
it as $T = (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$ be this data sequence for simplicity. Here N is the
number of the examples in the data sequence and basically $N = |D| \times MaxIter$ ($|D|$ is the
number of examples in our training data D).

Also, remember the prediction rule for averaged perceptron:

$$\hat{y} = \text{sign} \left(\sum_{k=1}^{K} c^{(k)} w^{(k)} \cdot \hat{x} + \sum_{k=1}^{K} c^{(k)} h^{(k)} \right)$$

In averaged perceptron, we compute a weighted sum S of the weight vectors $w^{(k)}$ that
we encounter during the our scan over the data sequence T (we only talk about the weight
vectors here, but the argument extent naturally to the bias). The weight for each weight vector \(w^{(k)} \) in the weighted sum \(S \) is based on the survival time \(c^{(k)} \) of that weight vector in the data sequence (i.e., \(c^k \) is the ratio (over the entire sequence \(T \)) of the examples encountered right after \(w^k \) is produced and before \(w^k \) is replaced by \(w^{k+1} \) – the examples correctly predicted by \(w^{(k)} \):

\[
S = \sum_{k=1}^{K} c^{(k)} w^{(k)}
\]

(1)

The goal of this note is to show that the Algorithm 1 is actually computing \(S \) (i.e., the returned value of \(w - \frac{1}{c} u \) is equal to \(S \)).

Proof Sketch:

First, the \(K \) variable in \(\hat{j} \) and \(S \) implies that we have \(K \) weight vectors along the scan over the data sequence. Note that based on the training procedure, we will only produce a new weight vector at an example in the sequence when the current weight vector cannot correctly classify that example. For convenience, let \(i_1, \ldots, i_K \) be the indexes of the examples in the data sequence for which we need to compute a new vector weight. Basically, we have \(i_1 < i_2 < \ldots < i_K \leq N \) and the weight vector produced at the example indexed at \(i_k \) (i.e., the example \((x_{i_k}, y_{i_k}) \)) is \(w^{(k)} \) (due to the misclassification of \(w^{k-1} \) for \(x_{i_k} \)) (for all \(1 \leq k \leq K \)).

Also, let \(i_0 = 0, i_{K+1} = N \) and \(w^0 = 0 \) for convenience.

With these notations, the survival time \(c^{(k)} \) for \(w^{(k)} \) can be computed by (i.e., the portions of examples between \(w^{(k)} \) and \(w^{(k+1)} \) over the entire sequence \(T \)):

\[
c^{(k)} = \frac{i_{k+1} - i_k}{N} \forall 1 \leq k \leq K
\]

(2)

Also, based on the update rule of the training procedure, we can write \(w^{(k)} \) as:

\[
w^{(k)} = w^{(k-1)} + y_{i_k} x_{i_k} \forall 1 \leq k \leq K
\]

(3)

By extending this equation, we have:

\[
w^{(k)} = w^{(k-1)} + y_{i_k} x_{i_k} = w^{(k-2)} + y_{i_{k-1}} x_{i_{k-1}} + y_{i_k} x_{i_k} = \ldots = w^{(0)} + y_{i_1} x_{i_1} + \ldots + y_{i_k} x_{i_k}
\]

(4)

In other words, we have \(w^{(0)} = 0 \):

\[
w^{(k)} = \sum_{j=1}^{k} y_{i_j} x_{i_j} \forall 1 \leq k \leq K
\]

(5)

Now, plugging Equations 2 and 5 to Equation 1, we obtain:

\[
S = \sum_{k=1}^{K} \frac{i_{k+1} - i_k}{N} \sum_{j=1}^{k} y_{i_j} x_{i_j}
\]

(6)

Among the terms over \(k \) of \(S \) (i.e., \(\frac{i_{k+1} - i_k}{N} \sum_{j=1}^{k-1} y_{i_j} x_{i_j} \)), we note that \(y_{i_j} x_{i_j} \) only appears in the terms where \(k \geq j \). Also, there are \(K \) possible terms of the type \(y_{i_j} x_{i_j} \) with \(j \) ranging
from 1 to K in S. Consequently, by grouping the terms of the $y_{ij}x_{ij}$ together, we can rewrite S as follow:

$$S = \sum_{j=1}^{K} y_{ij}x_{ij} \sum_{k=j}^{K} \frac{i_{k+1} - i_k}{N} = \frac{1}{N} \sum_{j=1}^{K} y_{ij}x_{ij} \sum_{k=j}^{K} (i_{k+1} - i_k)$$ \hspace{1cm} (7)

Due to the cancellation, we have: $\sum_{k=j}^{K} (i_{k+1} - i_k) = i_{K+1} - i_j = N - i_j$, leading to:

$$S = \frac{1}{N} \sum_{j=1}^{K} y_{ij}x_{ij}(N - i_j) = \sum_{j=1}^{K} y_{ij}x_{ij} - \frac{1}{N} \sum_{j=1}^{K} y_{ij}i_jx_{ij}$$ \hspace{1cm} (8)

Now, consider the training procedure in Algorithm 1 again. We can see that the final value of the variable w would involve an accumulation of the quantities $y_t x_t$ where t is the index of one of the examples in T for which we need to compute a new value or update the value for w (i.e., $t \in \{i_1, i_2, \ldots, i_K\}$). In other words, the final value for w is:

$$w = \sum_{j=1}^{K} y_{ij}x_{ij}$$ \hspace{1cm} (9)

Similarly, the final value of the variable u would accumulate the quantities $y_t x_t$ for $t \in \{i_1, i_2, \ldots, i_K\}$ as the counter variable c is essentially the index of the current example in T. Thus, the final value of u is:

$$u = \sum_{j=1}^{K} y_{ij}i_jx_{ij}$$ \hspace{1cm} (10)

and the final value of c is $c = N$.

Consequently, combining everything, the returned (or final) value for $w - \frac{1}{c} u$ is:

$$w - \frac{1}{c} u = \sum_{j=1}^{K} y_{ij}x_{ij} - \frac{1}{N} \sum_{j=1}^{K} y_{ij}i_jx_{ij}$$ \hspace{1cm} (11)

This is exactly the value for S we show above and completes the proof.