Spring ’20 CIS 410/510 Midterm Review

The exam will be an 80-minute quiz on Canvas, and can be started between 12 and 12:30 PM.

You may use any course resources during the exam (slides, assignments, textbooks, articles, piazza), but not the internet is general. You may not collaborate with your classmates in any way.

Questions will be in short-answer format with partial credit for partial answers.

You will be asked to write pseudocode resembling Unity C#.

You may assume that you’re working with a vector-math library that supports vector addition, vector subtraction, vector-scalar multiplication (e.g., \(\text{Vector3 } u = 2.0f \times v + w \)), a dot-product function \(\text{float dot(Vector3 } a, \text{ Vector3 } b) \), a cross-product function \(\text{Vector3 cross(Vector3 } a, \text{ Vector3 } b) \), and a square-root function \(\text{float sqrt(float } f) \).

Topics:

- Game loops and types of game objects (drawn, updated, both)
- Vector-vector addition and subtraction, vector-scalar multiplication, vector length
- Dot and cross products – definition, uses
- Vector normalization, linear interpolation
- Game mechanics, experience duration, ancillary rewards, practical rewards, difficulty, harnessed pacing & intensity, playtesting
- Commit discipline, 6 principals of Kanban
- Command, Flyweight, Observer, State, Subclass Sandbox, Spatial Partition patterns

1. [10] Consider the following function:

   ```c
   bool closerTo(Vector3 a, Vector3 b, Vector3 c);
   ```

 Implement the above function so that it efficiently (e.g., without using square roots) returns true if \(a \) is closer to \(b \) than \(c \), false otherwise:

2. [10] Briefly describe 3 reasons why game difficulty should ideally scale superlinearly with player progression:

3. [10] Briefly describe the 6 practices of Kanban: