Stack Construction Problem

This is meant to be a brief explanation of the recurrence for the StackConstruction problem, discussed in the seminar. The variable names here reflect the (very simple) names in the accompanying code.

Here we are given a string $w = w_1w_2 \cdots w_n$ and want to find the fewest number of stack operations ($push$, $print$, and pop) to print the entire string as discussed in the problem description.

The subproblem, $s(i, j)$, will be the fewest number of stack operations to print $w_iw_{i+1} \cdots w_j$, as always starting with an empty stack and ending with an empty stack. Thus the desired output will be $s(1, n)$.

comments:

- A single character (alone) needs 3 operations ($push$, $print$, pop), so $s(i, i) = 3$.
- We also need a base case of $s(i+1, i) = 0$ for the empty string.
- It is always possible to process the first character of the substring alone (3 operations) then handle the rest independently, so $s(i, j)$ has $3 + s(i+1, j)$ as a possible solution.
- Suppose $w_i = a$ and another a appears later in the substring, say at position k (so $w_k = w_i = a$ with $i < k \leq j$) ...
- ... here think of the substring as $aw_{i+1} \cdots w_{k-1}aw_{k+1} \cdots w_j$, and now the idea is that we could reuse the a at position k ...
- ... that is, $push$ a, $print$ a, process $w_{i+1} \cdots w_{k-1}$ on top of the a, then deal with the a at position k.
- The key point for the recurrence is that we will not charge $w_i = a$ for a $push/pop$, but defer that to the last character a that is used to match with it.
- Therefore, another solution to $s(i, j)$ is

 1. 1 (to print w_i) plus,
 2. $s(i+1, k-1)$ (to process $w_{i+1} \cdots w_{k-1}$ on top of the a) plus,
 3. $s(k, j)$, to process $aw_{k+1} \cdots w_j$ (the $push/pop$ costs for a would be paid here or deferred to an even later a)

Combining the above we get

$$s(i, j) = \begin{cases}
0 & (i > j) \\
3 & (i = j) \\
\text{minimum of} & (i < j) \\
3 + s(i+1, j) & \text{and} \\
1 + s(i+1, k-1) + s(k, j) & \text{for all } k \text{ } (i < k \leq j) \text{ where } w_i = w_k
\end{cases}$$
To think about coding this, note that the subproblems $s(i, j)$ get harder as $d = j - i$ get larger (the substrings get longer). Therefore we should compute them in that order.

Pseudo-pseudo-Code:

create array s

initialize all $s[i, i]=3$, $s[i+1, i]=0$ as the base cases

for $d=1$ to $n-1$
 for $i=1$ to $n-d$
 $j=i+d$
 \[
 s(i, j) = \text{minimum of the last two lines in the recurrence above}
 \]

return $s[1, n]$

Time is going to be $O(n^3)$ using $O(n^2)$ space.