Alternate Terms

- Turing-decidable: decidable, recursive, rec
- Turing-recognizable: recognizable, semi-decidable, recursively enumerable, RE, re
- \leq_T: Turing-reducible, reducible
- \leq_m: mapping-reducible, many-one-reducible

Definitions

1. A set B is used as an oracle if we allow a computation to ask questions of the form “$y \in B$” as a basic step. Think of it as allowing the computation as having a sub-routine that determines membership in B.
2. A set A is B-recursive if A can be decided using a B-oracle. Similarly, A is B-re if it can be recognized using a B-oracle.
3. We say A reduces to B ($A \leq_T B$) if A is B-recursive.
4. A m-reduces to B ($A \leq_m B$) if there is a Turing-computable string function $f : \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$ we have
 \[w \in A \iff f(w) \in B \]
5. A set K is RE-hard if, for all recognizable sets A, $A \leq_m K$.
6. K is RE-complete if K is both recognizable and RE-hard. Alternate terms:
 - m-complete for RE
 - complete for the recognizable sets under \leq_m

“Obvious?” Facts

- Both \leq_T and \leq_m are reflexive ($A \leq_m A$) and transitive ($A \leq_m B$ and $B \leq_m C$ implies $A \leq_m C$)
- $A \leq_m B$ implies $A \leq_T B$
- $A \leq_T \overline{A}$
- \(A \leq_m B \) iff \(\bar{A} \leq_m \bar{B} \)
- the following are equivalent: \(A \leq_T B, A \leq_T \bar{B}, \bar{A} \leq_T B, \bar{A} \leq_T \bar{B} \)
- \(A_{TM} \) is RE-complete (proof below)
- If
 - \(K \) is RE-complete,
 - \(K \leq_m K' \), and
 - \(K' \) is RE

then \(K' \) is RE-complete (follows from definition of complete and transitivity of \(\leq_m \)).
- If both \(A \) and \(\bar{A} \) are RE, then \(A \) is recursive. (Theorem 4.22 of text says it better.)

More Facts, Definitions

\(A_{TM} \) is RE-complete

(proof) First, \(A_{TM} \) is RE, thanks to the existence of a universal TM \(U \). Now we have to show that any RE set \(A \) m-reduces to \(A_{TM} \). Since \(A \) is RE, it is recognized by some TM \(M \). By defining \(f(w) = \langle M, w \rangle \) we get

\[
w \in A \iff M \text{ accepts } w \iff f(w) = \langle M, w \rangle \in A_{TM}\]

\(A_{TM} \leq_T HALT_{TM} \)

(proof) pretty easy, done in text

\(A_{TM} \leq_m HALT_{TM} \), so therefore HALT_{TM} is also RE-complete

(proof) Also sort of easy, but subtle. We show a computable \(f \) such that on input \(\langle M, w \rangle \), \(f(\langle M, w \rangle) = \langle M', w \rangle \) so that

\[
M \text{ accepts } w \iff M' \text{ halts on } w
\]

What \(M' \) will do is simulate \(M \) on its input: \(M' \) halts if \(M \) accepts but it goes into \(\infty \)-loop if \(M \) rejects. (Obviously, if \(M \) loops then so will \(M' \)) Notably, the constructor for \(f \) does not run \(M \), instead it wraps the “code” for \(M \) with “code” that will simulate it and behave as described.

Closure properties for \(\leq_m \) and \(\leq_T \)

1. The recursive sets are closed under \(\leq_m \): if \(A \leq_m B \) and \(B \) is recursive, then \(A \) is recursive.
2. The RE sets are closed under \(\leq_m \): if \(A \leq_m B \) and \(B \) is RE, then \(A \) is RE.
3. The recursive sets are closed under \(\leq_T \): if \(A \leq_T B \) and \(B \) is recursive, then \(A \) is recursive.
4. The RE sets are not closed under \(\leq_T \): for example \(A_{TM} \) is RE and \(\bar{A}_{TM} \leq_T A_{TM} \), but \(\bar{A}_{TM} \) is not RE (if it were, then \(A_{TM} \) would be recursive).

Arithmetic Hierarchy
• $\Sigma_0 = \Delta_0 = \Delta_1 = \Pi_0 = \text{recursive}$
• $\Sigma_1 = \text{recursively-enumerable}$
• $\Pi_1 = \text{co-RE} = \{ A \mid \overline{A} \in \Sigma_1 \}$
• in general $\Pi_k = \text{co-}\Sigma_k = \{ A \mid \overline{A} \in \Sigma_k \}$
• $\Delta_{k+1} = \{ A \mid A \text{ is } B\text{-recursive for some } B \in \Sigma_k \} = \{ A \mid A \leq_T B \text{ for some } B \in \Sigma_k \}$
• $\Sigma_{k+1} = \{ A \mid A \text{ is } B\text{-RE for some } B \in \Sigma_k \}$

Basic AH Facts

• $\Delta_k = \Sigma_k \cap \Pi_k$
• $\Delta_k = \text{co-}\Delta_k$
• $\Delta_k \neq \Sigma_k$ (follows from ex 7, hw 7), so $\Sigma_k \neq \Pi_k$

Post’s Theorem

A is Σ_k if it can be characterized as

$$A = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \ldots Q_k y_k \langle x, y_1, y_2, y_3, \ldots, y_k \rangle \in B \}$$

where B is decidable and quantifier $Q_k = \exists$ if k is odd and \forall if it is even. (Here x and all the y_i’s are strings over the same alphabet.) Similarly, A is Π_k if we can write

$$A = \{ x \mid \forall y_1 \exists y_2 \forall y_3 \ldots \overline{Q_k} y_k \langle x, y_1, y_2, y_3, \ldots, y_k \rangle \in B \}$$

where B is decidable and quantifier $\overline{Q_k} = \forall$ if k is odd and \exists if it is even.

Friedberg-Muchnik Theorem

There are two RE sets A, B such that $A \not\leq_T B$ and $B \not\leq_T A$.