CODA: Towards Automatically Identifying and Scheduling COflows in the DArk

Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, Yanhui Geng
SIGCOMM, 2016
Coflow: A Networking Abstraction for Cluster Applications

Mosharaf Chowdhury and Ion Stoica
Hotnets, 2012
Problem

• Flow-level optimizations (e.g. FCT, fairness) do not do well with data-parallel applications
 • Traditional flows are too fine-grained

• Need to enforce policy on groups of flows
 • Optimal completion
 • Strict deadlines

• Depends on application semantics
Observations

• Machines organized by functionality
• Communication between groups follows patterns
 • Shuffle
 • Broadcast
 • Aggregate
Solution

- Coflow: semantically related group of flows between machine groups
- Ordering of coflows
 - Finishes before
 - Starts after
- Intent-driven API between driver (coordinator), sender, receiver

<table>
<thead>
<tr>
<th>Operation</th>
<th>Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create(pattern, [options])</code> → <code>handle</code></td>
<td>Driver</td>
</tr>
<tr>
<td><code>update(handle, [options])</code> → <code>result</code></td>
<td>Driver</td>
</tr>
<tr>
<td><code>put(handle, id, content, [options])</code> → <code>result</code></td>
<td>Sender</td>
</tr>
<tr>
<td><code>get(handle, id, [options])</code> → <code>content</code></td>
<td>Receiver</td>
</tr>
<tr>
<td><code>terminate(handle, [options])</code> → <code>result</code></td>
<td>Driver</td>
</tr>
</tbody>
</table>
Coflow Scheduling Problem

• When to start flows?
• What rate should each flow progress at?
• Optimize for
 • Coflow Completion Time (CCT)
 • Deadlines
• NP-Hard
Coflow Scheduling Problem

(a) Datacenter fabric

(b) Coflow arrival times

Coflow Arrival Time

0 1 0

(c) Per-flow fairness

Time

3 6

(d) Decentralized LAS

Time

3 6

(e) CLAS

Time

3 6

(f) The optimal schedule
Coflow Scheduling Problem

(a) Per-flow fairness

(b) Per-flow prioritization

(c) WSS [15]

(d) The optimal schedule
Coflow Scheduling Solutions

• Varys (2014) ~ 3x speed up compared with per-flow
 • Smallest Effective Bottleneck First
 • Minimum Allocation for Desired Duration

• Aalo (2015)
 • Non-clairvoyant
 • Discretized Coflow Least Attained Service (by total bytes sent per coflow)
 • Weighted fair queuing across FIFOs

• CODA (2016)
 • Application transparent coflow identification
 • Error tolerant coflow scheduler
CODA: Towards Automatically Identifying and Scheduling COflows in the DArk

Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, Yanhui Geng
SIGCOMM, 2016
Problems

• Infeasible to enforce correct usage of same coflow API in real clusters
• Evidence from Spark and Hadoop
 • Intrusive refactoring
 • Blocking, non-blocking I/O mismatches
 • Third-party libraries
• Want to identify coflows for any data-parallel application
Goals

• Application-transparent coflow identification
 • No application modification
• Error-tolerant coflow scheduler
• Deployable / compatible
COflows in the DArk

• Use machine learning to identify coflows from flow attributes
 • Explicit and implicit attributes
 • Incremental Rough-DBSCAN for identification

• Scheduler which tolerates errors
 • Late binding
 • Intra-coflow prioritization
Design

CODA Master

Application-Transparent Identifier

Online Incremental Clustering

Offline Attribute Exploration

Distance Metric Learning

Error-Tolerant Scheduler

Late Binding

Inter-Coflow Prioritization

Intra-Coflow Prioritization

CODA Agent(s)

Gather and Prune Flow Information

Enforce Coflow Schedule
Identification-Scheduling Cycle

• Gather and prune information on Agents
 • Per-flow IP and port
 • TCP only
 • Size threshold

• Agents periodically export to Master
 • Identify coflows
 • Generate schedule to minimize CCT

• Schedule returned to Agents for enforcement
 • tc
Identification: Goals

• Not require any modification to applications
• Accurate
• Fast
Identification: Method

- Multi-level attribute exploration
- Flow distance calculation
- Clustering
Identification: Attributes

• Explicit (flow-level)
 • Start time (S_{time})
 • Mean packet size (M_{size})
 • Packet size variance (V_{size})
 • Average packet inter-arrival time (M_{int}, V_{int})

• Implicit (community-level)
 • Community distance $\in \{0,1\}$ (D_{com})
 • via spectral clustering community detection
 • Port distance $\in \{0,1\}$ (D_{prt})
 • 1 iff same destination port and IP
Identification: Unused Attributes

• Flow-level
 • Flow size
 • Duration

• OS-level
 • PID
Identification: Distance

• Run typical benchmarks to get labeled data
 • Traces (data)
 • Coflow data annotated by applications (labels)
• Optimize attribute weights using Newton Raphson method
 • Prune out near zero weight attributes
Identification: Distance

• Start time is only useful flow-level attribute
• Community distance is useful
• Port distance utility depends on application

\[A_s = \begin{bmatrix}
S_{time} & M_{size} & V_{size} & M_{int} & V_{int} & D_{com} & D_{prt} \\
3.825 & 0.000 & 0.000 & 0.000 & 0.000 & 5.431 & 0.217
\end{bmatrix} \]

\[A_h = \begin{bmatrix}
S_{time} & M_{size} & V_{size} & M_{int} & V_{int} & D_{com} & D_{prt} \\
3.472 & 0.000 & 0.000 & 0.000 & 0.000 & 3.207 & 0.000
\end{bmatrix} \]

\(A_s \) : Spark weights, \(A_h \) : Hadoop weights
Identification: Clustering

• DBSCAN (O(n^2))
 • Don’t know the number of clusters in advance
 • Handles outliers well

• Rough-DBSCAN (O(nk + k^2))
 • Select k leaders, run DBSCAN on leaders, replace with followers

• Incremental Rough-DBSCAN (O(mk + k^2))
 • Only do leader selection with m newly started/finished flows
 • For most intervals m is small
Identification: Clustering

Algorithm 1 Incremental R-DBSCAN

1: **procedure** CLUSTERING(Previous leader-follower structure \(L \) (initially \(\emptyset \)), New flows \(F_{\text{new}} \), Flows left \(F_{\text{left}} \), range \(\tau \))

2: \hspace{1em} for each Flow \(f \in F_{\text{new}} \) do \hspace{1em} \textbf{▷} Add new flows

3: \hspace{2em} Find a leader \(l \in L \) such that \(d(f, l) < \tau \)

4: \hspace{2em} if no such leader exists then

5: \hspace{3em} \(L = L \cup \{f\} \) \hspace{1em} \textbf{▷} Create a new leader

6: \hspace{3em} \(f.\text{followers} = \{f\} \)

7: \hspace{2em} else

8: \hspace{3em} \(l.\text{followers} = l.\text{followers} \cup \{f\} \) \hspace{1em} \textbf{▷} Add to an old leader

9: \hspace{2em} end if

10: end for

11: \hspace{1em} for each Flow \(f \in F_{\text{left}} \) do \hspace{1em} \textbf{▷} Delete left flows

12: \hspace{2em} Find its leader \(l \)

13: \hspace{2em} if \(f = l \) then

14: \hspace{3em} Delete \(l \) from \(L \) if \(l.\text{followers} = \{l\} \)

\hspace{3em} \textbf{▷} A leader is deleted only when it has no other followers

15: \hspace{3em} else

16: \hspace{4em} \(l.\text{followers} = l.\text{followers} \setminus \{f\} \)

17: \hspace{4em} end if

18: \hspace{2em} end if

19: \hspace{1em} end for

20: \hspace{1em} Run \(DBSCAN(L, \epsilon, 1) \) and get \(\mathcal{C}' \) (cluster of leaders)

21: \hspace{1em} Obtain \(\mathcal{C} \) by replacing each leader by its followers

22: \hspace{1em} return cluster of flows \(\mathcal{C} \)

23: **end procedure**
Scheduling: Errors

- Pioneers: flows scheduled into earlier coflows
- Stragglers: flows scheduled into later coflows
- Stragglers are worse in terms of CCT

(a) A pioneer increases the average CCT to \((1.1+2)/2 = 1.55 \)

(b) A straggler increases average CCT to \((2+2)/2 = 2 \)
Scheduling: Late Binding

• Defer identification of flows lying on boundaries
• Assign these flows to the higher priority coflow later
 • Favors creation of pioneers over stragglers
Scheduling: Intra-flow prioritization

• Per-flow prioritization
 • Based on bytes sent within each identified coflow
• Small flows straggling in large flows get priority
• Mitigates falsely merged coflows
Scheduling: Implementation

- Extension
 - Extend each identified coflow by \(d \)
 - Duplicates are later scheduled with higher priority

- Inter-coflow prioritization
 - Discretized Coflow Least Attained Service
 - Prioritized coflow queues

- Intra-coflow prioritization
 - Smallest-first using MLFQ
Scheduling: Implementation

Algorithm 2 CODA's Error-Tolerant Scheduler

1: procedure COFLOWEXTENSION((Identified) Coflows C, diameter d)
2: \[C^* = \emptyset \] \Comment{Set of extended coflows to be returned}
3: for all Coflow \(C \in \mathcal{C} \) do
4: \[G = \{(\text{Flows}) f_i | d(f_i, C) \leq d\} \]
5: \[C^* = C^* \cup \{C \cup G\} \] \Comment{Extend coflow and add}
6: end for
7: return \(C^* \)
8: end procedure

9: procedure INTERCOFLOW(Extended Coflows \(C^* \), Coflow Queues \(Q^C \))
10: for all \(i \in [1, |Q^C|] \) do
11: for all \(C^* \in Q^C_i \) do \Comment{\(Q^C_i \) sorted by arrival time}
12: IntraCoflow(\(C^* \), \(Q^F \))
13: end for
14: end for
15: end procedure

16: procedure INTRACOFLOW(Extended Coflow \(C^* \), Flow Queues \(Q^F \))
17: for all \(j \in [1, |Q^F|] \) do
18: for all Flows \(f \in C^* \cap Q^F_j \) and not yet scheduled do
19: \(f\text{'s rate} = \text{Max-min fair share rate} \)
20: Mark \(f \) as scheduled \Comment{Binds \(f \) to the highest priority coflow among all it belongs to}
21: end for
22: end for
23: end procedure

24: procedure CODASCHEDULER(\(C \), \(Q^C \), \(Q^F \), d)
25: \(C^* = \text{CoflowExtension}(C, d) \)
26: InterCoflow(\(C^* \), \(Q^C \))
27: end procedure
Implementation: for validation

• Implement Aalo’s coflow API in Hadoop
 • Instrumented RPC message format
 • Modified networking library to push coflow data from RPC to TCP layer
 • Lookup coflow information in binary messages

• Instrumented java byte code to capture coflows at runtime
 • Job IDs in Hadoop
 • Spark shuffles
Implementation: CODA

• Agent could be kernel module
• Reused java bytecode instrumentation instead to collect
 • Flow start time
 • Source / destination IP / port
• Two-level HTB in tc for enforcement
• ~1% CPU overhead
Evaluation Details

• Facebook Hive/MR trace from 3000-node cluster
• 500 coflows, 7×10^5 flows
• Scaled down to 40 Gbps testbed bisection bandwidth
• Synthesized start times from uniform and exponential distributions
 • Based on experience with other benchmarks

(a) Inter coflow arrival time (b) No. of concurrent coflows
Results

• Coflow Completion Time compared with per-flow fairness
 • 2.4x improvement average
 • 5.1x improvement 95-th percentile

• Coflow identification accuracy
 • 90% under normal production work loads
 • 60% under challenges
 • Attribute weight learning is critical (40% improvement)
 • Iterative R-DBSCAN is 600x faster than traditional DBSCAN with negligible loss
Results: Testbed Performance

(a) Accuracy

(b) CCT and JCT

Normalized Comp. Time

CCT

JCT

CODA
Results: Simulation Scalability

(a) Overheads at scale

(b) Impact of Δ

Coeflow Comp. Time ($\times 10^4$ s)
Results: Different Workloads

(a) Normal workloads
(b) Batch arrival
(c) Stretched arrival

Synthetic challenges
Results: Effectiveness and Sensitivity

(d) Effectiveness of DML

(Duration Metric Learning)

(e) Sensitivity to ϵ

in Iterative-R-DBSCAN classifier
Results: Scheduler (Normal)

(a) Normalized CCT

(b) CCT distribution
Results: Scheduler (Challenge)

(a) Batch arrival case (Hadoop)

(b) Stretched arrival case