Deep Compositional Question Answering with Neural Module Networks

Andreas, J. & Rohrbach, M. & Darrell, T. & Klein, D.
University of California, Berkeley
Visual Question Answering

- How do we answer these questions?
- What breed is the dog?
 - 2 steps:
 - Look for dog
 - Infer breed
How many shapes are to the left of a red circle?

- 4 steps:
 - Look for circles
 - Identify red ones
 - Look to their left
 - Count shapes
Visual Question Answering

• It’s compositional by nature
 – `classify[breed](attend[dog])`
 – `count[shapes](re-attend[left](combine[and] (attend[red],attend[circle])))`

• Upper bound?
 – Potentially none

• There’s no “single best network”
 – Function mapping questions & contexts to answers
Neural Module Networks (NMN)
Neural Module Networks (NMN)

- General architecture for composing neural modules into deep networks
- Neural modules
 - Composable
 - Jointly-trained
 - Heterogeneous
 - Perform different computations depending on the “messages” exchanged among them
Each **training datum** is a 3-tuple \((w, x, y)\):
- \(w\) is a natural-language question
- \(x\) is an image
- \(y\) is an answer

A **Model** consists of 2 parts:
- Collection of modules \(\{m\}\)
- Predictor \(P\) maps *string* \(\rightarrow\) *network*
 - \(P(w) \rightarrow\) network layout
 - \(p(y \mid w, x; \theta)\) \(\theta\) – modules parameters
• **Task**: identify minimal set of modules needed
 - Attention, Re-attention, Combination, Classification, and Measurement
• Modules operate on 3 data types
 - Images
 - Attentions (unnormalized)
 - Labels (classification predictions)
• For visual question answering task:
 - Interesting compositional phenomena occur in attention space
 - Other types can be added later
Modules

- **TYPE[INSTANCE](ARG1, . . .)**
 - Type – high-level module type (Ex. attend, classify,...)
 - Instance – particular instance under consideration (Ex. dog, car, ...)
 - Modules with no arguments implicitly take images as input.

\[
\text{attend} : \text{Image} \rightarrow \text{Attention}
\]
Modules

\[
\text{re-attend} : \text{Attention} \rightarrow \text{Attention}
\]

\[
\text{combine} : \text{Attention} \times \text{Attention} \rightarrow \text{Attention}
\]
Modules

classify: \[\text{Image} \times \text{Attention} \rightarrow \text{Label} \]

measure: \[\text{Attention} \rightarrow \text{Label} \]
Strings to Networks

- **Predictor P**
 - Takes in question w outputs a layout
 - Has 3 main stages: parsing, filtering, building

- **Parsing**
 - Stanford Parser
 - Dependency representation
 - Express grammatical relations
 - Objects \rightarrow attributes
 - Events \rightarrow participants
 - Lemmatization (helps with sparsity of instances)
Strings to Networks

• Filtering
 – Keep dependencies connected to *wh-word*
 • *What is standing in the field?*
 – what(stand)
 • *What color is the truck?*
 – color(truck)
 • *Is there a circle next to a square?*
 – is(circle, next-to(square))
 – *Remove determiners and modals*
 • *What type of cakes were they? What type of cake is it?*
 – type(cake)
Strings to Networks

- Final Layout construction
 - Leaves become “attend” modules
 - Internal nodes “re-attend” or “combine”
 • Depending on arity
 - Root nodes become “classify” or “measure”
 • Depending on question
 - Measure → yes/no
 - Classify → all others
Final Model

- Combination of NMN predictions and simple LSTM question encoder.
 - Deals with the simplification caused by the parser
 - Captures *semantic* regularities
 - *What color is the bear?*
 - *Green* – not likely
 - *Brown* – more likely
- Standard single-layer LSTM 1024 hidden units
- Final prediction is the geometric average of the two probability distributions.
Neural Module Networks (NMN)
Training

- Find module parameters maximizing likelihood of data.
- For each training example
 - A different network structure
 - An input image
 - An output label
- Networks with same high-level structure (layout) but different instances
 - What color is the cat?
 - classify[color](attend[cat])
 - Where is the truck?
 - classify[where](attend[truck])

Can be processed in the same batch
Training

- AdaDelta optimizer
 - Some weights are updated more frequently than others.
 - Adaptative per-weight learning rates

- Labels such as “dog” or “red” - attend[truck]
 - Just a notational convenience
 - No manual specification of behaviour
 - Behaviour is acquired as a byproduct of training.
Datasets

• VQA Dataset
 – Based on the COCO dataset
 – 200,000 natural images
 • Each with 3 questions and 10 answers per question.
 – Generated by human annotators
 • Larger and more natural than CocoQA
 – Training only with answers marked as “high confidence”
Datasets

- **SHAPES**
 - Synthetic images of simple arrangements of shapes
 - Good for compositionality
 - Questions in other datasets are too simple
 - Only one or two pieces of information needed
 - No evaluation of robustness
 - Questions in SHAPES
 - Between 2 and 4 attributes, object types, relations
 - 244 questions and 15,616 images
Experiments and Results

- **SHAPES**
 - LeNet for features
 - NMN easy
 - No size-6 questions

<table>
<thead>
<tr>
<th></th>
<th>size 4</th>
<th>size 5</th>
<th>size 6</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority</td>
<td>64.4</td>
<td>62.5</td>
<td>61.7</td>
<td>63.0</td>
</tr>
<tr>
<td>VIS+LSTM</td>
<td>71.9</td>
<td>62.5</td>
<td>61.7</td>
<td>65.3</td>
</tr>
<tr>
<td>NMN</td>
<td>89.7</td>
<td>92.4</td>
<td>85.2</td>
<td>90.6</td>
</tr>
<tr>
<td>NMN (easy)</td>
<td>97.7</td>
<td>91.1</td>
<td>89.7</td>
<td>90.8</td>
</tr>
</tbody>
</table>

- *Is there a red shape above a circle?*
Experiments and Results

- VQA
 - 16-layer VGGNet
 - conv5 layer

- **What color is his tie?**

<table>
<thead>
<tr>
<th></th>
<th>test-dev</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes/No</td>
<td>Number</td>
</tr>
<tr>
<td>LSTM [2]</td>
<td>78.20</td>
<td>35.7</td>
</tr>
<tr>
<td>VIS+LSTM [2]</td>
<td>78.9</td>
<td>35.2</td>
</tr>
<tr>
<td>NMN</td>
<td>69.38</td>
<td>30.7</td>
</tr>
<tr>
<td>NMN+LSTM</td>
<td>77.7</td>
<td>37.2</td>
</tr>
</tbody>
</table>
Experiments Results

<table>
<thead>
<tr>
<th></th>
<th>types</th>
<th># instances</th>
<th># layouts</th>
<th>max depth</th>
<th>max size</th>
</tr>
</thead>
<tbody>
<tr>
<td>VQA</td>
<td>attend, combine, classify, measure</td>
<td>1995</td>
<td>66549</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>SHAPES</td>
<td>attend, re-attend, combine, measure</td>
<td>8</td>
<td>164</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>how many different lights in various different shapes and sizes?</td>
</tr>
<tr>
<td></td>
<td>what is the color of the horse?</td>
</tr>
<tr>
<td></td>
<td>what color is the vase?</td>
</tr>
<tr>
<td></td>
<td>is the bus full of passengers?</td>
</tr>
<tr>
<td></td>
<td>is there a red shape above a circle?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>measurecount</td>
</tr>
<tr>
<td></td>
<td>classifycolor</td>
</tr>
<tr>
<td></td>
<td>classifycolor</td>
</tr>
<tr>
<td></td>
<td>measure[is](combine[and](attend[bus], attend[full]))</td>
</tr>
<tr>
<td></td>
<td>measure[is](combine[and](attend[red], re-attendabove))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>four (four)</td>
</tr>
<tr>
<td></td>
<td>brown (brown)</td>
</tr>
<tr>
<td></td>
<td>green (green)</td>
</tr>
<tr>
<td></td>
<td>yes (yes)</td>
</tr>
<tr>
<td></td>
<td>yes (yes)</td>
</tr>
</tbody>
</table>
Issues

• Yes/No category performance
 – Model overfitting
 • Proposal: ensemble with sequence-only system
• Parser
 – Lots of room for improvement
 – Complex questions not parsed correctly
 • *Are these people most likely experiencing a work day?*
 – Parsed as be(people,likely)
 – Should be be(people,work)
 • Proposal: joint learning
Issues

<table>
<thead>
<tr>
<th>Question</th>
<th>Scenario</th>
<th>Material</th>
<th>Is Clock</th>
<th>Is Red is Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is stuffed with toothbrushes wrapped in plastic?</td>
<td>where does the tabby cat watch a horse eating hay?</td>
<td>what material are the boxes made of?</td>
<td>Is this a clock?</td>
<td>Is a red shape blue?</td>
</tr>
<tr>
<td>classifywhat</td>
<td>classifywhere</td>
<td>classifymaterial</td>
<td>measureis</td>
<td>measure[is](combine[and](attend[red], attend[blue]))</td>
</tr>
<tr>
<td>container (cup)</td>
<td>pen (barn)</td>
<td>leather (cardboard)</td>
<td>yes (no)</td>
<td>yes (no)</td>
</tr>
</tbody>
</table>

- Plausible semantic confusions
- Normal Lexical Variations
- Irrelevant *a priori* plausible knowledge
Comments

• Appreciate the high-level style
 – Pleasant & easy read
 – Good comprehension of intuition and proposal
• Implementation remains unknown
 – Devil is in the details
• Clearly not the final paper
 – Several redaction errors
Thank you