Lecture 4: Constraint Satisfaction Problems

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html
Announcements

- Homework 1: Search (Reminder)
 - Already released on Jan 15th, 2019 on Canvas
 - Deadline: Jan 29th, 2019

- Project 1: Search (Reminder)
 - Deadline: Jan 24th, 2019

- Attendance:
 - Don’t forget to sign the attendance sheet!!!
Today

- Informed Search
 - Graph Search
- Constraint Satisfaction Problems
 - Backtracking Search
 - Filtering
 - Ordering
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?
In BFS, for example, we shouldn’t bother expanding some nodes (which, and why?)
Graph Search

- Very simple fix: never expand a state type twice

```
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure
  closed ← an empty set
  fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
  loop do
    if fringe is empty then return failure
    node ← REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE[node] is not in closed then
      add STATE[node] to closed
      fringe ← INSERTALL(EXPAND(node, problem), fringe)
  end
```

- Can this wreck completeness? Why or why not?
- How about optimality? Why or why not?
A* Graph Search Gone Wrong

State space graph

Search tree

- **S** (0+2)
 - **A** (1+4)
 - **B** (1+1)
 - **C** (2+1)
 - **G** (5+0)
 - **C** (3+1)
 - **G** (6+0)
Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 \[h(A) \leq \text{actual cost from A to G} \]
 - Consistency: heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost}(A \text{ to } C) \]
- Consequences of consistency:
 - The f value along a path never decreases
 \[h(A) \leq \text{cost}(A \text{ to } C) + h(C) \]
 \[f(A) = g(A) + h(A) \leq g(A) + \text{cost}(A \text{ to } C) + h(C) \leq f(C) \]
 - A* graph search is optimal
Optimality of A* Graph Search
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal
Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)

- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are a specialized class of identification problems
Constraint Satisfaction Problems
Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Allows useful general-purpose algorithms with more power than standard search algorithms
CSP Examples

Western Australia
Northern Territory
South Australia
Queensland
New South Wales
Victoria
Tasmania
Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T

- Domains: $D = \{\text{red, green, blue}\}$

- Constraints: adjacent regions must have different colors

 Implicit: WA \neq NT

 Explicit: $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), \ldots\}$

- Solutions are assignments satisfying all constraints, e.g.:

 $\{WA=\text{red}, NT=\text{green}, Q=\text{red}, NSW=\text{green}, V=\text{red}, SA=\text{blue}, T=\text{green}\}$
Example: N-Queens

- Formulation 1:
 - Variables: X_{ij}
 - Domains: \{0, 1\}
 - Constraints

\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
\sum_{i,j} X_{ij} = N
\]
Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - Domains: \{1, 2, 3, … N\}
 - Constraints:

 Implicit: $\forall i, j$ non-threatening(Q_i, Q_j)

 Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

 …
Constraint Graphs
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables

- Binary constraint graph: nodes are variables, arcs show constraints

- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Sudoku

- **Variables:**
 - Each (open) square

- **Domains:**
 - \{1,2,...,9\}

- **Constraints:**
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)
Varieties of CSPs and Constraints
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 - \(SA \neq \text{green} \)
 - Binary constraints involve pairs of variables, e.g.:
 - \(SA \neq WA \)
 - Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Scheduling problems: e.g., when can we all meet?
- Timetabling problems: e.g., which class is offered when and where?
- Assignment problems: e.g., who teaches what class
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...
Solving CSPs
Standard Search Formulation

- Standard search formulation of CSPs

- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

- We’ll start with the straightforward, naïve approach, then improve it
Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?
Backtracking Search
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called backtracking search (not the best name)

- Can solve n-queens for $n \approx 25$
Backtracking Example
Backtracking Search

function Backtracking-Search(csp) returns solution/failure
 return Recursive-Backtracking({}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
 if assignment is complete then return assignmen
 var ← Select-Unassigned-Variable(VARIABLES[csp], assignment, csp)
 for each value in Order-Domain-Values(var, assignment, csp) do
 if value is consistent with assignment given Constraints[csp] then
 add {var = value} to assignment
 result ← Recursive-Backtracking(assignment, csp)
 if result ≠ failure then return result
 remove {var = value} from assignment
 return failure

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?
Filtering
Filtering: Keep track of domains for unassigned variables and cross off bad options

- Forward checking: Cross off values that violate a constraint when added to the existing assignment
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- *Constraint propagation*: reason from constraint to constraint
Consistency of A Single Arc

- An arc $X \rightarrow Y$ is **consistent** iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

Delete from the tail!

- Forward checking: Enforcing consistency of arcs pointing to each new assignment.
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if REMOVE-INCONSISTENT-VALUES\((X_i, X_j)\) then
 for each \(X_k\) in Neighbors[X_i] do
 add \((X_k, X_i)\) to queue

function REMOVE-INCONSISTENT-VALUES\((X_i, X_j)\) returns true iff succeeds
removed \leftarrow false
for each \(x\) in Domain[X_i] do
 if no value \(y\) in Domain[X_j] allows \((x, y)\) to satisfy the constraint \(X_i \leftarrow X_j\)
 then delete \(x\) from Domain[X_i]; removed \leftarrow true

return removed

- Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

What went wrong here?
K-Consistency
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute

- (You need to know the k=2 case: arc consistency)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent

- Claim: strong n-consistency means we can solve without backtracking!

- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...

- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)
CIS 471/571 (Winter 2019): Introduction to Artificial Intelligence

Lecture 4: Constraint Satisfaction Problems (Part 2)

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html
Announcements

- **Project 1: Search (Reminder)**
 - Deadline: Jan 24th, 2019
 - Submission:
 - Group: acknowledge contributions

- **Homework 1: Search (Reminder)**
 - Deadline: Jan 29th, 2019

- **Attendance:**
 - Don’t forget to sign the attendance sheet!!!
Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

- Goals:
 - Here: find any solution
 - Also: find all, find best, etc.
Backtracking Search

```plaintext
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment given CONSTRAINTS[csp] then
      add {var = value} to assignment
      result ← RECURSIVE-BACKTRACKING(assignment, csp)
      if result ≠ failure then return result
      remove {var = value} from assignment
  return failure
```
Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it’s all still NP-hard

- Filtering: Can we detect inevitable failure early?
 - Forward checking
 - Constraint propagation (arc consistency)

- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)

- Structure: Can we exploit the problem structure?
Arc Consistency and Beyond
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are simultaneously consistent:

- Arc consistency detects failure earlier than forward checking
- Important: If X loses a value, neighbors of X need to be rechecked!
- Must rerun after each assignment!

Remember: Delete from the tail!
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!
K-Consistency
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints

 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other

 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute

- (You need to know the k=2 case: arc consistency)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent

- Claim: strong n-consistency means we can solve without backtracking!

- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...

- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)
Ordering
Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?

- Combining these ordering ideas makes 1000 queens feasible
Structure
Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact

- Independent subproblems are identifiable as connected components of constraint graph

- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$

- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning
Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward: For $i = n : 2$, apply RemoveInconsistent(Parent(X_i),X_i)
 - Assign forward: For $i = 1 : n$, assign X_i consistently with Parent(X_i)

- Runtime: $O(n \ d^2)$ (why?)
Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
 - Proof: Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 - Proof: Induction on position

- Why doesn’t this algorithm work with cycles in the constraint graph?
- Note: we’ll see this basic idea again with Bayes’ nets
Improving Structure
Nearly Tree-Structured CSPs

- **Conditioning**: instantiate a variable, prune its neighbors' domains

- **Cutset conditioning**: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

- **Cutset size c gives runtime $O\left((d^c) \cdot (n-c) \cdot d^2 \right)$, very fast for small c
Cutset Conditioning

1. Choose a cutset
2. Instantiate the cutset (all possible ways)
3. Compute residual CSP for each assignment
4. Solve the residual CSPs (tree structured)
Find the smallest cutset for the graph below.
Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

\[\{(\text{WA}=\text{r},\text{SA}=\text{g},\text{NT}=\text{b}), (\text{WA}=\text{b},\text{SA}=\text{r},\text{NT}=\text{g}), \ldots\} \]

\[\{(\text{NT}=\text{r},\text{SA}=\text{g},\text{Q}=\text{b}), (\text{NT}=\text{b},\text{SA}=\text{g},\text{Q}=\text{r}), \ldots\} \]

Agree: \((M_1,M_2) \in \{(\text{WA}=\text{g},\text{SA}=\text{g},\text{NT}=\text{g}), (\text{NT}=\text{g},\text{SA}=\text{g},\text{Q}=\text{g})\}, \ldots\)
Iterative Improvement
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with $h(n) = \text{total number of violated constraints}$
Example: 4-Queens

- States: 4 queens in 4 columns \(4^4 = 256\) states
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(c(n) = \text{number of attacks}\)
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
- Ordering
- Filtering
- Structure

Iterative min-conflicts is often effective in practice
Local Search
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)

- Local search: improve a single option until you can’t make it better (no fringe!)

- New successor function: local changes

- Generally much faster and more memory efficient (but incomplete and suboptimal)
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What’s bad about this approach?
 - Complete?
 - Optimal?

- What’s good about it?
Hill Climbing Diagram

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
Hill Climbing Quiz

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
        schedule, a mapping from time to “temperature”

local variables: current, a node
                 next, a node
                 T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(Initial-State[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability $e^{ΔE/T}$
```
Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: $p(x) \propto e^{\frac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways
Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety

- Possibly the most misunderstood, misapplied (and even maligned) technique around
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?