CIS 441/541: Intro to Computer Graphics
Lecture 5: Transforms
No Class Tuesday, 1/29

• Will definitely be a YouTube lecture to replace that one.
Office Hours: Weeks 4-10

• Monday: 1-2 (Roscoe)
• Tuesday: 1-2 (Roscoe)
• Wednesday: 1-3 (Roscoe)
• Thursday: 1130-1230 (Hank)
• Friday: 1130-1230 (Hank)
Office Hours: Week 3

- Monday: 415-530 (Hank)
- Tuesday: 1-2, 2-3 (Roscoe)
- Wednesday: 1-3 (Roscoe)
- Thursday: 1130-1230 (Hank)
- Thursday: 1230-230 (Roscoe)
- Friday: 1030-1130 (Hank)
Timeline

• **1C:** due Weds Jan 23rd
• **1D:** assigned today (LAST TUESDAY), due Thurs Jan 31st
• **1E:** assigned Thurs Jan 31st, due Weds Feb 6th
 – → will be extra support with this. Tough project.
• **1F:** assigned Feb 7th, due Feb 19th
 – → not as tough as 1E
• **2A:** will be assigned during week of Feb 11th

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Weds</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 20</td>
<td>Jan 21</td>
<td>Jan 22</td>
<td>Jan 23 1C due</td>
<td></td>
<td>Jan 25</td>
<td>Jan 26</td>
</tr>
<tr>
<td>Jan 27</td>
<td>Jan 28</td>
<td>Jan 29 (YouTube)</td>
<td>Jan 30 1D due</td>
<td>Lec 6 1E assigned</td>
<td>Feb 1</td>
<td>Feb 2</td>
</tr>
<tr>
<td>Feb 3</td>
<td>Feb 4</td>
<td>Feb 5 Lec 7</td>
<td>Feb 6</td>
<td>Lec 8 1E due 1F assigned</td>
<td>Feb 8</td>
<td>Feb 9</td>
</tr>
</tbody>
</table>

Likely: pre-SuperBowl OH
Great news!!

• No project assignment today…
Project #1D (5%),
Due Thurs Jan 31st

• Goal: interpolation of color and zbuffer
• Extend your project1C code
• File proj1d_geometry.vtk available on web (1.4MB)
• File “reader1d.cxx” has code to read triangles from file.
• No Cmake, project1d.cxx
Color is now floating-point

• We will be interpolating colors, so please use floating point (0 → 1)
• Keep colors in floating point until you assign them to a pixel
• Fractional colors? → use ceil_441...
 – ceil_441(value*255)
Changes to data structures

class Triangle
{
 public:
 double X[3], Y[3], Z[3];
 double colors[3][3];
};

→ reader1d.cxx will not compile until you make these changes
Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

Image space:
All viewable objects within -1 <= x,y,z <= +1

Screen space:
All viewable objects within -1 <= x, y <= +1

Device space:
All viewable objects within 0<=x<=width, 0 <=y<=height
MATH!
A “space” is a set of points

Many types of spaces
Here is a space ‘S’:
the points in the blue shape
We can pick an arbitrary point in S and call it our “origin.”
Consider two directions, D1 and D2.
Imagine you live at \textquotedblleft O\textquotedblright{} and you want to get to \textquotedblleft X\textquotedblright. Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X2.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X2.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X3.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X4.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Imagine you live at “O” and you want to get to “X4.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
Conventions!

- Let \((a, b)\) mean:
 - The number of steps ‘\(a\)’ in direction D1
 - The number of steps ‘\(b\)’ in direction D2
Where is (-3, 2)?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2
A basis

- Paraphrasing Wikipedia:
- Let $B = \{ D_1, D_2 \}$ (a set of two vectors, D_1 & D_2)
- Let S be our Shape
- B is a **basis** for S if every element of S can be written as a **unique** linear combination of elements of B.
- The coefficients of this linear combination are referred to as **components** or **coordinates** on B of the vector.
- The elements of a basis are called **basis vectors**.
Why unique?

- Let \((a, b, c)\) mean:
 - The number of steps ‘a’ in direction D1
 - The number of steps ‘b’ in direction D2
 - The number of steps ‘c’ in direction D3

- Then there is more than one way to get to some point \(X\) in \(S\), i.e.,
 - \((a_1, b_1, c_1) = X\) and
 - \((a_2, b_2, c_2) = X\)
What does it mean to form a basis?

- For any vector v, there are unique coordinates (c_1, \ldots, c_n) such that
 \[v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n \]
- Consider some point P.
 - The basis has an origin O
 - There is a vector v such that $O + v = P$
 - We know we can construct v using a combination of v_i's
 - Therefore we can represent P in our frame using the coordinates (c_1, c_2, \ldots, c_n)
Paraphrasing Wikipedia:

Let \(B = \{ D_1, D_2 \} \) (a set of two vectors, \(D_1 \) & \(D_2 \))

Let \(S \) be our Shape

\(B \) is a basis for \(S \) if every element of \(S \) can be written as a unique linear combination of elements of \(B \).

The coefficients of this linear combination are referred to as components or coordinates on \(B \) of the vector.

The elements of a basis are called basis vectors.
Most common basis

- **D1** = X-axis (i.e., (1,0,0)-(0,0,0))
- **D2** = Y-axis (i.e., (0,1,0)-(0,0,0))
- **D3** = Z-axis (i.e., (0,0,1)-(0,0,0))

Then the coordinate (2, -3, 5) means

- 2 units along X-axis
- -3 units along Y-axis
- 5 units along Z-axis
But we could have other bases

- Instead of “basis 1” (B1)
 - $D_1 = X$-axis (i.e., (1,0,0)-(0,0,0))
 - $D_2 = Y$-axis (i.e., (0,1,0)-(0,0,0))
 - $D_3 = Z$-axis (i.e., (0,0,1)-(0,0,0))

- Use “basis 2” (B2)
 - $D_1 = Y$-axis (i.e., (0,1,0)-(0,0,0))
 - $D_2 = X$-axis (i.e., (1,0,0)-(0,0,0))
 - $D_3 = Z$-axis (i.e., (0,0,1)-(0,0,0))

- Then (a,b,c) in B1 is the same as (b,a,c) in B2
Frame:
- A way to place a coordinate system into a specific location in a space
- Basis + reference coordinate (“the origin”)

Cartesian example: (3,4,6)
- It is assumed that we are speaking in reference to the origin location (0,0,0).
Example of Frames

Frame $F = (v_1, v_2, O)$
- $v_1 = (0, -1)$
- $v_2 = (1, 0)$
- $O = (3, 4)$

What are F‘s coordinates for the point $(6, 6)$?
Example of Frames

- Frame $F = (v_1, v_2, O)$
 - $v_1 = (0, -1)$
 - $v_2 = (1, 0)$
 - $O = (3, 4)$

- What are F's coordinates for the point $(6, 6)$?

- Answer: $(-2, 3)$
Each box is a frame, and each arrow converts to the next frame.

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x,y,z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0<=x<=width, 0 <=y<=height
Models stored in “world space” frame
 - Pick an origin, store all points relative to that origin
We have been rasterizing in “device space” frame
Our goal: transform from world space to device space
We will do this using matrix multiplications
 - Multiply point by matrix to convert coordinates from one frame into coordinates in another frame
But wait! There’s more…

- And matrices also useful for more than frame-to-frame conversions.

- So let’s get comfy with matrices.
Matrix

- Defined: a rectangular array of numbers (usually) arranged in rows and columns

- Example
 - 2D matrix
 - “two by three” (two rows, three columns)
 - [3 4 8]
 - [-1 9.2 12]
Matrix: wikipedia picture

m-by-n matrix

n columns

j changes

\[
\begin{bmatrix}
 a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\
 a_{2,1} & a_{2,2} & a_{2,3} & \cdots \\
 a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\
 \vdots & \vdots & \vdots & \ddots \\
 \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]
Matrix

- What do you do with matrices?
- Lots of things
 - Transpose, invert, add, subtract
- But most of all: multiply!
Multiplying two 2x2 matrices

\[
\begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix}
\begin{pmatrix}
 e & f \\
 g & h \\
\end{pmatrix}
=
\begin{pmatrix}
 (a*e+b*g) & (a*f+b*h) \\
 (c*e+d*g) & (c*f+d*h) \\
\end{pmatrix}
\]
One usage for matrices:
Let \((a, b)\) be the coordinates of a point
Then the 2x2 matrix can transform \((a, b)\) to a new location \(-(a*e+b*g, a*f+b*h)\)
Identity Matrix

\[
\begin{pmatrix}
 a & b \\
 0 & 1 \\
\end{pmatrix}
\times
\begin{pmatrix}
 1 & 0 \\
 0 & 1 \\
\end{pmatrix}
=
\begin{pmatrix}
 a & b \\
 0 & 1 \\
\end{pmatrix}
\]
\[(a \ b) \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2a \\ b \end{pmatrix} = (a, b) \quad (2a, b)\]

Scale in X, not in Y
\[
\begin{pmatrix}
 a & b \\
 0 & t
\end{pmatrix}
\begin{pmatrix}
 s & 0 \\
 0 & t
\end{pmatrix}
=
\begin{pmatrix}
 sa & tb \\
 (a, b) & (sa, t)
\end{pmatrix}
\]

Scale in both dimensions
(a b) (0 -1) (b -a)
X =
(1 0)

Rotate 90 degrees counterclockwise
(a b) (0 1) (-b a)
X (-1 0) =

Rotate 90 degrees counterclockwise
\[(a \ b) \begin{pmatrix} \cos(\Omega) & -\sin(\Omega) \\ \sin(\Omega) & \cos(\Omega) \end{pmatrix} = (\cos(\Omega) \cdot a + \sin(\Omega) \cdot b, -\sin(\Omega) \cdot a + \cos(\Omega) \cdot b)\]

Rotate “\(\Omega\)” degrees counter-clockwise
How do we rotate by 90 degrees clockwise and then scale X by 2?

- **Answer:** multiply by matrix that multiplies by 90 degrees clockwise, then multiple by matrix that scales X by 2.

- **But can we do this efficiently?**

\[
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}X
=
\begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}X
\]
Combining transformations

- How do we scale X by 2 and then rotate by 90 degrees clockwise?

 - Answer: multiply by matrix that scales X by 2, then multiply by matrix that rotates 90 degrees clockwise.

\[
\begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & -2 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
X
\end{pmatrix}
=
\begin{pmatrix}
1 & 0
\end{pmatrix}
\]

- Rotate then scale

\[
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
X
\end{pmatrix}
=
\begin{pmatrix}
2 & 0
\end{pmatrix}
\]

Order matters!!
Translation is harder:

(a) + (c) = (a+c)
(b) + (d) = (b+d)

But this doesn’t fit our nice matrix multiply model…
What to do??
Homogeneous Coordinates

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x & y & 1
\end{pmatrix}
=
\begin{pmatrix}
x & y & 1
\end{pmatrix}
\]

Add an extra dimension.
A math trick … don’t overthink it.
Homogeneous Coordinates

Translation

We can now fit translation into our matrix multiplication system.
Two really important operations:
- Transform from one frame to another
- Transform geometry (rotate, translate, etc)

Both can be done with matrix operations

In both cases, need homogeneous coordinates

Much of graphics is accomplished via 4x4 matrices

And: you can compose the matrices and do bunches of things at once (EFFICIENCY)
| **Former type** | Public |
| **Traded as** | NYSE: SGI
OTC Pink: SGID.pk
NASDAQ: SGIC |
| **Industry** | Computer hardware and software |
| **Fate** | Chapter 11 bankruptcy; assets acquired by Rackable Systems, which renamed itself Silicon Graphics International Corp. |
| **Founded** | November 9, 1981; 37 years ago
Mountain View, California, U.S.⁹¹ |
| **Defunct** | May 11, 2009 |
| **Headquarters** | Sunnyvale, California, U.S. |
| **Key people** | Jim Clark,
Kurt Akeley,
Ed McCracken,
Thomas Jermoluk |
| **Products** | High-performance computing, visualization and storage |
| **Website** | www.sgi.com/ |
3dfx Voodoo
(source: wikipedia)
Early GPUs

- Special hardware to do 4x4 matrix operations
- A lot of them (in parallel)
GPUs now

- Many, many, many cores
- Each code less powerful than typical CPU core
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 ≤ x, y, z ≤ +1

Screen space:
- All viewable objects within -1 ≤ x, y ≤ +1

Device space:
- All viewable objects within 0 ≤ x ≤ width, 0 ≤ y ≤ height
World Space

- World Space is the space defined by the user’s coordinate system.
- This space contains the portion of the scene that is transformed into image space by the camera transform.
- Many of the spaces have “bounds”, meaning limits on where the space is valid.
- With world space 2 options:
 - No bounds
 - User specifies the bound
Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

Image space:
All viewable objects within
-1 <= x, y, z <= +1

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0 <= x <= width, 0 <= y <= height

Camera Transform
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within \(-1 \leq x,y,z \leq +1\)

Screen space:
- All viewable objects within \(-1 \leq x, y \leq +1\)

Device space:
- All viewable objects within \(0 \leq x \leq \text{width}, 0 \leq y \leq \text{height}\)
How do we specify a camera?

The “viewing pyramid” or “view frustum”.

Frustum: In geometry, a frustum (plural: frusta or frustums) is the portion of a solid (normally a cone or pyramid) that lies between two parallel planes cutting it.

class Camera
{
 public:
 double near, far; // angle;
 double angle; // position[3];
 double position[3]; // focus[3];
 double focus[3]; // up[3];
};
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 ≤ x, y, z ≤ +1

Screen space:
- All viewable objects within -1 ≤ x, y ≤ +1

Device space:
- All viewable objects within 0 ≤ x ≤ width, 0 ≤ y ≤ height
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within
 \[-1 \leq x, y, z \leq +1\]

Screen space:
- All viewable objects within
 \[-1 \leq x, y \leq +1\]

Device space:
- All viewable objects within
 \[0 \leq x \leq \text{width},
 0 \leq y \leq \text{height}\]
Image Space

- Image Space is the three-dimensional coordinate system that contains screen space.
- It is the space where the camera transformation directs its output.
- The bounds of Image Space are 3-dimensional cube.
 \[\{(x,y,z) : -1 \leq x \leq 1, -1 \leq y \leq 1, -1 \leq z \leq 1\}\]
 (or \(-1 \leq z \leq 0\))
Image Space Diagram

X = -1
Y = -1
Z = 1
X = 1
Y = 1
Z = -1
Our goal

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within -1 <= x,y,z <= +1

Screen space:
- All viewable objects within -1 <= x, y <= +1

Device space:
- All viewable objects within 0 <= x <= width, 0 <= y <= height
Screen Space

- Screen Space is the intersection of the xy-plane with Image Space.
- Points in image space are mapped into screen space by projecting via a parallel projection, onto the plane $z = 0$.
- Example:
 - a point $(0, 0, z)$ in image space will project to the center of the display screen.
Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

Image space:
All viewable objects within
$-1 \leq x, y, z \leq +1$

Screen space:
All viewable objects within
$-1 \leq x, y \leq +1$

Device space:
All viewable objects within
$0 \leq x \leq \text{width}, 0 \leq y \leq \text{height}$
Device Space

- Device Space is the lowest level coordinate system and is the closest to the hardware coordinate systems of the device itself.

- Device space is usually defined to be the $n \times m$ array of pixels that represent the area of the screen.

- A coordinate system is imposed on this space by labeling the lower-left-hand corner of the array as $(0,0)$, with each pixel having unit length and width.
Device Space Example

- pixel (0, 0)
- pixel (3, 7)
- pixel (15, 15)
Extends Device Space to three dimensions by adding z-coordinate of image space.

Coordinates are \((x, y, z)\) with

\[
0 \leq x \leq n \\
0 \leq y \leq m \\
z \text{ arbitrary (but typically } -1 \leq z \leq +1 \text{ or } -1 \leq z \leq 0)
\]
Easiest Transform

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

Image space:
- All viewable objects within
 \(-1 \leq x, y, z \leq +1\)

Screen space:
- All viewable objects within
 \(-1 \leq x, y \leq +1\)

Device space:
- All viewable objects within
 \(0 \leq x \leq \text{width}, 0 \leq y \leq \text{height}\)
(x, y, z) \rightarrow (x', y', z'), where
- \[x' = n \times (x+1)/2 \]
- \[y' = m \times (y+1)/2 \]
- \[z' = z \]
- (for an n x m image)

Matrix:

\[
\begin{pmatrix}
 x' & 0 & 0 & 0 \\
 0 & y' & 0 & 0 \\
 0 & 0 & z' & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]
Coming Up on YouTube Lecture

World space:
- Triangles in native Cartesian coordinates
- Camera located anywhere

Camera space:
- Camera located at origin, looking down -Z
- Triangle coordinates relative to camera frame

- Need to construct a Camera Frame
- Need to construct a matrix to transform points from Cartesian Frame to Camera Frame
 - Transform triangle by transforming its three vertices