CIS 441/541: Intro to Computer Graphics
Lecture 4: Interpolation

January 22, 2019
Hank Childs, University of Oregon
Taylor...
No Class Tuesday, 1/29

• Will definitely be a YouTube lecture to replace that one.
Office Hours: Weeks 4-10

• Monday: 1-2 (Roscoe)
• Tuesday: 1-2 (Roscoe)
• Wednesday: 1-3 (Roscoe)
• Thursday: 1130-1230 (Hank)
• Friday: 1130-1230 (Hank)
Office Hours: Week 3

- Monday: 415-530 (Hank)
- Tuesday: 1-2, 2-3 (Roscoe)
- Wednesday: 1-3 (Roscoe)
- Thursday: 1130-1230 (Hank)
- Thursday: 1230-230 (Roscoe)
Timeline

• 1C: due Weds Jan 23rd
• 1D: assigned today, due Thurs Jan 31st
• 1E: assigned Thurs Jan 31st, due Weds Feb 6th
 → will be extra support with this. Tough project.
• 1F: assigned Feb 7th, due Feb 19th
 → not as tough as 1E
• 2A: will be assigned during week of Feb 11th

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Weds</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan20</td>
<td>Jan21</td>
<td>Jan 22</td>
<td>Jan 23</td>
<td>Lec 5</td>
<td>Jan 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lec4</td>
<td>1C due</td>
<td>1D assigned</td>
<td>Jan 26</td>
</tr>
<tr>
<td>Jan 27</td>
<td>Jan 28</td>
<td>Jan 29 (YouTube)</td>
<td>Jan 30</td>
<td>Lec 6</td>
<td>Feb 1</td>
<td>Feb 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1D due</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1E assigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 3</td>
<td>Feb 4</td>
<td>Feb 5 Lec 7</td>
<td>Feb 6</td>
<td>Lec 8</td>
<td>Feb 8</td>
<td>Feb 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1E due</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1F assigned</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How did I get my output?

```cpp
int triangleID = -1;
void Screen::SetPixel(int r, int c, unsigned char *col)
{
    cerr << "Triangle " << triangleID << " is writing to row " << r << ", column " << c << endl;
    cerr << "Block " << triangleID << " writing to row " << r << ", column " << c << endl;
}

for (int i = 0 ; i < triangles.size() ; i++)
{
    triangleID = i; // triangleID is a global
    Triangle &t = triangles[i];
    //t.Print(cerr);
    RasterizeTriangle(t, screen);
}
```
What is a field?

Example field (2D): temperature over the United States
How much data is needed to make this picture?

Example field (2D): temperature over the United States
Linear Interpolation for Scalar Field F
Linear Interpolation (LERP) for Scalar Field F

- General equation to interpolate:
 - $F(X) = F(A) + t*(F(B)-F(A))$
- t is proportion of X between A and B
 - $t = (X-A)/(B-A)$
Quiz Time #4

• F(3) = 5, F(6) = 11
• What is F(4)? = 5 + (4-3)/(6-3)*(11-5) = 7

• General equation to interpolate:
 – F(X) = F(A) + t*(F(B)-F(A))
• t is proportion of X between A and B
 – t = (X-A)/(B-A)
Consider a single scalar field defined on a triangle.
Consider a single scalar field defined on a triangle.
What is $F(V4)$?
What is $F(V_4)$?
• Steps to follow:
 – Calculate V5, the left intercept for Y=0.25
 – Calculate V6, the right intercept for Y=0.25
 – Calculate V4, which is between V5 and V6
(Here’s the slides I screwed up on last week)
What is the X-location of V5?

\[
F(v) = A + \left(\frac{v-v_1}{v_2-v_1}\right) (B-A)
\]

\[F(v) = 0.25, \text{ find } v\]

\[0.25 = 0 + \left(\frac{v-0}{1-0}\right) (1-0)\]

\[v = 0.25\]
What is the F-value of V5?

F(V1) = A → F(0) = 10
F(v2) = B → F(1) = 2
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v = 0.25, find F(v)

F(v) = 10 + ((0.25-0)/(1-0))*(2-10)
 = 10 + 0.25*-8 = 10 - 2 = 8
Why did I screw up?

• The logic in the slide?
 → interpolate to X
 → once you know X, use that to find V

Why did this screw me up?

• you can interpolate to V directly

• The previous slide is particularly confusing because it is along the line $Y=X$.
If y-value == 1, then two questions:
What is X value?
What is field value?
If y-value == 1, then two questions:
What is X value?
What is field value?
If y-value == 1, then two questions:
What is X value?
→
Option 1: solve for line (what we did before)
(could actually use LERP formula too)
If y-value == 1, then two questions:
What is field value?
→
Use LERP formula
\[F(1) = F(0) + t \times (F(5) - F(0)) \]
\[= 6 + 0.2 \times (3 - 6) = 5.4 \]
(all F values are the y-coordinates → F(0) means the field value when Y is 0
\[t = \frac{(1 - 0)}{(5 - 0)} = 0.2 \]
\[= (\text{the y-coord of the point we want to find}) \]
\[\quad - (\text{the y-coord of one point we know}) \]
\[\quad / (\text{the y—coord of the other point we know}) \]
\[- (\text{the y-coord of the first point we know}) \]

(1, 5), Field value = 3

(0, 0), Field value = 6
What is the X-location of V6?

\[
F(v_1) = A \quad \rightarrow \quad F(1) = 1 \\
F(v_2) = B \quad \rightarrow \quad F(2) = 0 \\
F(v) = A + \frac{(v-v_1)}{(v_2-v_1)}(B-A) \\
F(v) = 0.25, \text{ find } v \\
0.25 = 1 + \frac{(v-1)}{(2-1)}(0-1) \\
\quad = 1 + (v-1)*(-1) \\
0.25 = 2 - v \\
v = 1.75
\]
What is the F-value of V6?

This one is really bad:
Simpler version:
\[T = 0.25 \rightarrow \frac{(0.25-0)}{(1-0)} \]
\[F(v) = -2 + 0.25(2 - -2) \rightarrow -2+0.25*4 = -1 \]

F(v1) = A \rightarrow F(1) = 2
F(v2) = B \rightarrow F(2) = -2
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v = 1.75, find F(v)

\[F(v) = 2 + \frac{(1.75-1)(2-1)*(-2 - +2)}{2-1} \]
\[= 2 + \frac{.75*(-4)}{1} \]
\[= 2 - 3 \]
\[= -1 \]
What is the F-value of V5?

L(V5) = (0.25, 0.25)
F(V5) = 8

F(V1) = 10

L(V6) = (1.75, 0.25)
F(V6) = -1

F(V3) = -2
What is the F-value of V5?

F(v1) = A → F(0.25) = 8
F(v2) = B → F(1.75) = -1
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v = 0.5, find F(v)

F(v) = 8 + ((0.5-0.25)/(1.75-0.25))*(-1-8)
= 8 + (0.25/1.5)*9 = 8 - 1.5 = 6.5

L(V5) = (0.25, 0.25)
F(V5) = 8
L(V6) = (1.75, 0.25)
F(V6) = -1
L(V3) = (V1) at (0.5, 0.25)
F(V3) = -2
Visualization of F

How do you think this picture was made?
Now We Understand Interpolation
Let’s Use It For Two New Ideas:
Color Interpolation
& Z-buffer Interpolation
Colors
What about triangles that have more than one color?
The color is in three channels, hence three scalar fields defined on the triangle.
Scanline algorithm

• Determine rows of pixels triangles can possibly intersect
 – Call them rowMin to rowMax
 • rowMin: ceiling of smallest Y value
 • rowMax: floor of biggest Y value

• For \(r \) in \([\text{rowMin} \rightarrow \text{rowMax}]\) ; do
 – Find end points of \(r \) intersected with triangle
 • Call them leftEnd and rightEnd
 – For \(c \) in \([\text{ceiling(leftEnd)} \rightarrow \text{floor(rightEnd)}]\) ; do
 • ImageColor\((r, c)\) \(\leftarrow\) triangle color
Scanline algorithm w/ Color

• Determine rows of pixels triangles can possibly intersect
 – Call them rowMin to rowMax
 • rowMin: ceiling of smallest Y value
 • rowMax: floor of biggest Y value
• For r in [rowMin \(\rightarrow\) rowMax] ; do
 – Find end points of r intersected with triangle
 • Call them leftEnd and rightEnd
 – Calculate Color(leftEnd) and Color(rightEnd) using interpolation from triangle vertices
 – For c in [ceiling(leftEnd) \(\rightarrow\) floor(rightEnd)] ; do
 • Calculate Color(r, c) using Color(leftEnd) and Color(rightEnd)
 • ImageColor(r, c) \(\leftarrow\) Color(r, c)
Simple Example

What is the color at (2, 1)?

V(0,0) RGB = (1,0,0)
V(1,1) RGB = (0.5,0.5,0)
V(2,1) RGB = (0.25,0.5,0.25)
V(2,2) RGB = (0,1,0)
V(3,1) RGB = (0,0.5,0.5)
V(4,0) RGB = (0,0,1)
Scanline algorithm w/ Color

• Determine rows of pixels triangles can possibly intersect
 – Call them rowMin to rowMax
 • rowMin: ceiling of smallest Y value
 • rowMax: floor of biggest Y value
• For r in [rowMin → rowMax] ; do
 – Find end points of r intersected with triangle
 • Call them leftEnd and rightEnd
 – Calculate Color(leftEnd) and Color(rightEnd) using interpolation from triangle vertices
 – For c in [ceiling(leftEnd) → floor(rightEnd)] ; do
 • Calculate Color(r, c) using Color(leftEnd) and Color(rightEnd)
 • ImageColor(r, c) ← Color(r, c)
Important

• ceiling / floor: needed to decide which pixels to deposit colors to
 – used: rowMin / rowMax, leftEnd / rightEnd
 – not used: when doing interpolation

Color(leftEnd) and Color(rightEnd) should be at the intersection locations ... no ceiling/floor.
How To Resolve When Triangles Overlap: The Z-Buffer
Imagine you have a cube where each face has its own color:

<table>
<thead>
<tr>
<th>Face</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Blue</td>
</tr>
<tr>
<td>Right</td>
<td>Green</td>
</tr>
<tr>
<td>Top</td>
<td>Red</td>
</tr>
<tr>
<td>Back</td>
<td>Yellow</td>
</tr>
<tr>
<td>Left</td>
<td>Purple</td>
</tr>
<tr>
<td>Bottom</td>
<td>Cyan</td>
</tr>
</tbody>
</table>

View from “front/top/right” side
Imagine you have a cube where each face has its own color.

How do we render the pixels that we want and ignore the pixels from faces that are obscured?
Consider a scene from the right side

<table>
<thead>
<tr>
<th>Face</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Blue</td>
</tr>
<tr>
<td>Right</td>
<td>Green</td>
</tr>
<tr>
<td>Top</td>
<td>Red</td>
</tr>
<tr>
<td>Back</td>
<td>Yellow</td>
</tr>
<tr>
<td>Left</td>
<td>Purple</td>
</tr>
<tr>
<td>Bottom</td>
<td>Cyan</td>
</tr>
</tbody>
</table>
Consider the scene from the top side

Camera/eyeball

Camera oriented directly at Front face, seen from the Top side

<table>
<thead>
<tr>
<th>Face</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Blue</td>
</tr>
<tr>
<td>Right</td>
<td>Green</td>
</tr>
<tr>
<td>Top</td>
<td>Red</td>
</tr>
<tr>
<td>Back</td>
<td>Yellow</td>
</tr>
<tr>
<td>Left</td>
<td>Purple</td>
</tr>
<tr>
<td>Bottom</td>
<td>Cyan</td>
</tr>
</tbody>
</table>
What do we render?

Green, Red, Purple, and Cyan all “flat” to camera. Only need to render Blue and Yellow faces (*).
What do we render?

What should the picture look like?
What’s visible? What’s obscured?

Camera/eyeball

Camera oriented directly at Front face, seen from the Top side

<table>
<thead>
<tr>
<th>Face</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Blue</td>
</tr>
<tr>
<td>Right</td>
<td>Green</td>
</tr>
<tr>
<td>Top</td>
<td>Red</td>
</tr>
<tr>
<td>Back</td>
<td>Yellow</td>
</tr>
<tr>
<td>Left</td>
<td>Purple</td>
</tr>
<tr>
<td>Bottom</td>
<td>Cyan</td>
</tr>
</tbody>
</table>
New field associated with each triangle: depth

• Project 1B, 1C:
 class Triangle
 {
 public:
 Double X[3];
 Double Y[3];
 ...
 };

• Now...
 Double Z[3];
What do we render?

Camera/eyeball

Camera oriented directly at Front face, seen from the Top side

<table>
<thead>
<tr>
<th>Face</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Blue</td>
</tr>
<tr>
<td>Right</td>
<td>Green</td>
</tr>
<tr>
<td>Top</td>
<td>Red</td>
</tr>
<tr>
<td>Back</td>
<td>Yellow</td>
</tr>
<tr>
<td>Left</td>
<td>Purple</td>
</tr>
<tr>
<td>Bottom</td>
<td>Cyan</td>
</tr>
</tbody>
</table>
Using depth when rendering

• Use Z values to guide which geometry is displayed and which is obscured.

• Example....
Consider 4 triangles with constant Z values

- $Z = -0.35$
- $Z = -0.5$
- $Z = -0.65$
- $Z = -0.8$
Consider 4 triangles with constant Z values

How do we make this picture?
Idea #1

- Sort triangles “back to front” (based on Z)
- Render triangles in back to front order
 - Overwrite existing pixels
Idea #2

- Sort triangles “front to back” (based on Z)
- Render triangles in front to back order
 - Do not overwrite existing pixels.
But there is a problem...
The Z-Buffer Algorithm

• The preceding 10 slides were designed to get you comfortable with the notion of depth/Z.
• The Z-Buffer algorithm is the way to deal with overlapping triangles when doing rasterization.
 – It is the technique that GPUs use.
• It works with opaque triangles, but not transparent geometry, which requires special handling
 – Transparent geometry discussed week 7.
 – Uses the front-to-back or back-to-front sortings just discussed.
The Z-Buffer Algorithm: Data Structure

• Existing: for every pixel, we store 3 bytes:
 – Red channel, green channel, blue channel

• New: for every pixel, we store a floating point value:
 – Depth buffer (also called “Z value”)

• Now 7 bytes per pixel (*)
 – (*): 8 with RGBA
The Z-Buffer Algorithm: Initialization

• Existing:
 – For each pixel, set R/G/B to 0.

• New:
 – For each pixel, set depth value to -1.

 – Valid depth values go from -1 (back) to 0 (front)
 – This is partly convention and partly because it “makes the math easy” when doing transformations.
Scanline algorithm

• Determine rows of pixels triangles can possibly intersect
 – Call them rowMin to rowMax
 • rowMin: ceiling of smallest Y value
 • rowMax: floor of biggest Y value
• For r in [rowMin → rowMax] ; do
 – Find end points of r intersected with triangle
 • Call them leftEnd and rightEnd
 – For c in [ceiling(leftEnd) → floor(rightEnd)] ; do
 • ImageColor(r, c) ← triangle color
Scanline algorithm w/ Z-Buffer

• Determine rows of pixels triangles can possibly intersect
 – Call them rowMin to rowMax
 • rowMin: ceiling of smallest Y value
 • rowMax: floor of biggest Y value

• For r in [rowMin → rowMax] ; do
 – Find end points of r intersected with triangle
 • Call them leftEnd and rightEnd
 – Interpolate z(leftEnd) and z(rightEnd) from triangle vertices
 – For c in [ceiling(leftEnd) → floor(rightEnd)] ; do
 • Interpolate z(r,c) from z(leftEnd) and z(rightEnd)
 • If (z(r,c) > depthBuffer(r,c))
 – ImageColor(r, c) ← triangle color
 – depthBuffer(r,c) = z(r,c)
The Z-Buffer Algorithm: Example
The Z-Buffer Algorithm: Example
Interpolation and Triangles

• We introduced the notion of interpolating a field on a triangle
• We used the interpolation in two settings:
 – 1) to interpolate colors
 – 2) to interpolate depths for z-buffer algorithm
• Project 1D: you will be adding color interpolation and the z-buffer algorithm to your programs.
Project #1D (5%),
Due Thurs Jan 31st

- Goal: interpolation of color and zbuffer
- Extend your project1C code
- File proj1d_geometry.vtk available on web (1.4MB)
- File “reader1d.cxx” has code to read triangles from file.
- No Cmake, project1d.cxx
Color is now floating-point

• We will be interpolating colors, so please use floating point (0 → 1)

• Keep colors in floating point until you assign them to a pixel

• Fractional colors? → use ceil_441...
 – ceil_441(value*255)
Changes to data structures

class Triangle
{
 public:
 double X[3], Y[3], Z[3];
 double colors[3][3];
};

→ reader1d.cxx will not compile until you make these changes
Project 1C
Arbitrary Triangles

• The description of the scanline algorithm in the preceding slides is general.
• But the implementation for these three triangles vary:
Arbitrary Triangles

• Project #1B: implement the scanline algorithm for “going down” triangles
• Project #1C: arbitrary triangles
Arbitrary Triangles

• Function: RasterizeGoingDownTriangle
 – (You have this from 1B)
• Function: RasterizeGoingUpTriangle
 – (You can write this by modifying RasterizeGoingDownTriangle)
• Function: RasterizeArbitraryTriangle
 – Split into two triangles
 – Call RasterizeGoingUpTriangle and RasterizeGoingDownTriangle
Project #1C (6%), Due (Jan 23rd)

- Goal: apply the scanline algorithm to arbitrary triangles and output an image.
- Extend your project1B code
- File proj1c_geometry.vtk available on web (80MB)
- File “reader.cxx” has code to read triangles from file.
- No Cmake, project1c.cxx
FORMAT = (column, row) = triangle ID
NOTE: 0's are ambiguous. Likely no triangle (black pixel), but possibly Triangle #0

File triangle_ids

Output from my program

Triangle 211525 is writing to row 615, column 927
Triangle 211526 is writing to row 614, column 928
Triangle 211527 is writing to row 615, column 928
Triangle 211528 is writing to row 614, column 929
Triangle 211529 is writing to row 614, column 930
Triangle 211529 is writing to row 615, column 930
Triangle 211529 is writing to row 615, column 930
Triangle 211530 is writing to row 614, column 931
New debugging stuff...