1. (exercise 15.2-1, p 378 from CLRS) Find an optimal of a matrix-chain product whose sequence of dimensions is \((5, 10, 3, 12, 5, 50, 6)\). Show the final \(m\) and \(s\) tables. [6 points]

2. For this dynamic programming problem and the next one, be sure to
 (a) describe the subproblem
 (b) give a recurrence for the subproblem
 (c) provide pseudo-code showing how a table for the subproblems is filled
 (d) give the time and space requirements of your method

The residents of the underground city of Zion defend themselves through a combination of kung-fu, heavy artillery, and efficient algorithms. Recently, they have become interested in automated methods that can help fend off attacks by swarms of robots.

Here’s what one of these robot attacks look like:

- A swarm of robots arrives over the course of \(n\) seconds; in the \(i^{th}\) second, \(x_i\) robots arrive. Based on remote sensing data, you know this sequence \(x_1, x_2, \ldots , x_n\) in advance.
- You have at your disposal an electromagnetic pulse (EMP), which can destroy some of the robots as they arrive; the EMP’s power depends on how long it’s been allowed to charge up. To make this precise, there is a function \(f(-)\) so that if \(j\) seconds have passed since the EMP was last used, then it is capable of destroying up to \(f(j)\) robots.
- So, specifically, if it is used in the \(k^{th}\) second, and it has been \(j\) seconds since it was previously used, then it will destroy \(\min[x_k, f(j)]\) robots. (After this use, it will be completely drained.)
- We will also assume that the EMP starts off completely drained, so if it is used for the first time in the \(j^{th}\) second, then it is capable of destroying up to \(f(j)\) robots.

Given the data on robot arrivals \(X = (x_1, x_2, \ldots , x_n)\), and given the recharging function \(f(-)\), the problem is to determine the maximum number of robots that can be destroyed by activating the EMP at certain points in time.

For example, suppose \(n = 4\), \(X = (1, 10, 10, 1)\) and \(f(-) = (1, 2, 4, 8)\). The best solution would be to activate the EMP in the 3rd and 4th seconds. In the 3rd second, the EMP has gotten to charge for 3 seconds, and so it destroys \(\min(10, 4) = 4\) robots. In the 4th second, the EMP has only gotten to charge for 1 second since its last use, and it destroys \(\min(1, 1) = 1\) robot. This is a total of 5.

[8 points]

3. (exercise 6.6, DPV) We define a multiplication operation table on three symbols \(a, b, c\) according to something like the table below, so that \(ab = b, ca = a\), and so on. The goal is
to determine whether a string of symbols, $s_1 s_2 \cdots s_n$ ($s_i \in \{a, b, c\}$) can be parenthesized in such a way so that their multiplication together equals a. Note that the operation is neither associative nor commutative (that is, it is possible that $ab \neq ba$ and $(ab)c \neq a(bc)$).

Table 1: multiplication table for a, b, c

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

For example, if the input string is $bbbac$ then the answer should be $true$ since $((bb)(ba))c = a$. **Hint:** define a subproblem $P[i, k, t]$, where $1 \leq i \leq n$, $0 \leq k < n$, and $t \in \{a, b, c\}$. $P[i, k, t]$ will be $true$ if it is possible to parenthesize $s_i s_{i+1} \cdots s_{i+k}$ in such a way that the multiplication in that order equals the symbol t, and $false$ otherwise.

[8 points]

4. Recall the problem of us having coins of denominations d_1, d_2, \ldots, d_n and we want to make change for T cents. We have an unlimited supply of each coin, and want to know the fewest number of coins that add up to T, if possible. In class we looked at the subproblem $C[t]$ as being the minimum number of coins to make change for $t \leq T$ cents ($C[t] = \infty$ means it is not possible). We also derived a recurrence relation for C:

$$C[t] = \begin{cases} \infty & \text{if } t < 0 \\ 0 & \text{if } t = 0 \\ 1 + \min_{j=1}^{n} C[t - d_j] & \text{otherwise.} \end{cases}$$

Give psuedo-code which computes C iteratively. Also, include code that will save some information and then print out the coins used to make change for T. (Note: Java code for computing it was provided at the end of the lecture slides for the knapsack problem. Here please provide higher-level pseudo code, something more easy to read than something ready to compile.) [8 points]

Total: 30 points