CIS 313: Intermediate Data Structure

week of Feb 4th

fifth week of the term
expected behavior

• if list a is chosen randomly from among all n! permutations
• how long does “for i=1 to n T.insert(a_i)” take?
• worst case: O(n^2)
• want to argue: on average O(n lg n)

• main fact: expected search time (1+I/n) in BST built from randomly chosen permutation is 2 \cdot \ln(n + 1) + O(1) \approx 1.38 \log_2 n + O(1)
observations

- this does not bound the height of the tree
- exercise 12.4-2, p 303: describe a binary search tree on n nodes such that the average depth of a node in the tree is $\Theta(\lg n)$ but the height of the tree is $\omega(\lg n)$
- stronger result: height of randomly built BST is $\Theta(\lg n)$
- new goal: maintain BST whose height is $\Theta(\lg n)$ in the worst case
- self balancing search trees: AVL, red-black, B-trees
balanced tree

• not realistic to expect perfectly balanced tree
• one attempt (not common): *weight-balance*, where the number of nodes in left and right subtrees of any node must be close to each other
• better: *height-balance*, the height of the left and right subtrees must be close
• AVL: differ by one
• red-black: differ by factor of two
• balance maintained by rotations
rotation: single

Right Rotation
Left Rotation
rotations: double

Composed from two single rotations.
AVL trees

• (not in text)
• named after inventors Adelson-Velskii and Landis
• store at each node the balance factor:
 • $bf(p) = \text{height}(p.\text{lchild}) - \text{height}(p.\text{rchild})$
 • requirement: for every node p, $bf(p)$ equals -1, 0, or 1
• requires two bits extra storage at each node
AVL height is $O(\log n)$

- let G_k be an AVL tree (shape) of height k with the fewest number of nodes
- G_k can be constructed inductively as a node with a G_{k-1} left child and a G_{k-2} right child
- define g_k to be the number of nodes in a G_k tree
 - $g_0 = 1$, $g_1 = 2$, $g_k = 1+g_{k-1}+g_{k-2}$
 - sequence: 1, 2, 4, 7, 12, 20
- fact: $g_k = F_{k+3} - 1$ (“easy” to prove with induction)
trees G_k and values g_k
AVL tree height: the punchline

• if \(n \) is the number of nodes in an AVL tree of height \(H \) then
 \[
 n \geq g_H = F_{H+3} - 1
 \]

• we know \(F_k = \left\lfloor \varphi^k / \sqrt{5} \right\rfloor \), where \(\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618 \)

• \(\lg F_{H+3} \geq \lg \frac{\varphi^{H+3}}{\sqrt{5}} - 1 = (H + 3) \lg \varphi - \lg \sqrt{5} - 1 \geq (H + 3) \lg \varphi - 4 \)

• so \((H + 3) \lg \varphi - 4 \leq \lg F_{H+3} \leq \lg(n + 1) \) (take log of both sides of top line)

• moving terms around: \(H \leq \frac{\lg(n+1)+4}{\lg \varphi} - 3 \approx 1.44 \lg(n + 1) + O(1) \)
AVL insertion

- insert node as with a BST (add it to a null pointer)
- update balance factors along path from new node to root
- the balance factors of some nodes may be in violation: 2 or -2
- find the critical node: the lowest out of balance node
- perform the appropriate rotation

- note: this will affect the balance factors of nodes above it
- total insertion time $O(lg n)$
AVL insertion

Four Possible Cases

- $bf(x) = +2$ and $bf(x.left) = 1$
 - rightRotate(x)

- $bf(x) = +2$ and $bf(x.left) = -1$
 - leftRotate(x.left)
 - rightRotate(x)

- $bf(x) = -2$ and $bf(x.right) = -1$
 - leftRotate(x)

- $bf(x) = -2$ and $bf(x.right) = 1$
 - rightRotate(x.right)
 - leftRotate(x)

Pictures from Wikipedia
2-3 and 2-3-4 trees

• quick intro here, we will return to them later as B-trees
• a 2-3 tree is a B-tree of order 3 \((\text{see ex 18-2, p 503, of text})\)
• these use multi-way search nodes
• must be perfectly balanced: all paths from the root to a null node have the same length
• insertions cause splits rather than rotations

• **important**: red-black trees (our real focus) are a binary implementation of 2-3-4 trees
multiway search nodes

- Node 4:
 - Elements < 4
 - Elements > 4

- Node 4 10:
 - Elements < 4
 - Elements > 4 and < 10
 - Elements > 10

- Node 4 10 20:
 - Elements < 4
 - Elements > 4
 - Elements > 10
example
insertion: splitting nodes

• can split a node when it is full or has overflowed
• splitting on insertion can be bottom-up
 • put node at bottom of tree, if over-flow, split on the way up
• or top-down
 • when looking for insertion point, if full node seen, split it
• most B-tree implementations use bottom up (less space)
splitting a full node

1. Insert 10 into the root node.
2. The root node is now full with the values 4, 10, 20.
3. Split the root node into two nodes: 4 and 20.
4. Insert the value 10 into the parent node as a new child node.

Diagram:

1. Initial node with values 4, 10, 20.
2. After splitting, the node is divided into 4 and 20, with 10 inserted into the parent node.

Nodes:
- T1
- T2
- T3
- T4
red-black trees and 2-3-4 trees

- a 2-3-4 tree node would need up to 4 child pointers
- frequently unused so waste of space
- red-black tree is binary tree implementation of 2-3-4 tree
- uses rotations to handle the splits
- need one bit to indicate color
 - descending the tree, black means “new node”
 - red means “belong to parent”

- Java uses RB trees in the TreeMap class
 (https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html)
2-3-4 nodes as RB nodes (2- and 3-nodes)

2-3-4 tree nodes

in an RB tree

--OR--
2-3-4 nodes as RB nodes (4-nodes)

a 4-node

in an RB tree
example RB tree
viewed as 2-3-4 tree
red-black tree rules

1. every node is either red or black
2. the root is black
3. every leaf (null) is black
4. if a node is red, both of its children are black
5. for each node, all simple paths from the node to descendant leaves contain the same number of black nodes