CIS 313

week of Jan 28

fourth week of the term
topics this week

• hash table
• binary search trees
hash tables

• chapter 11
• we want to manage a dynamic set K (\(|K|=n\)) where each element has a key in universe $U = \{0,1,\ldots,m-1\}$
• support efficient operations SEARCH, INSERT and DELETE (i.e., in $O(1)$)
• if m is small, an array $T[0,\ldots,m-1]$ would suffice
• each slot in T corresponds to a key in the universe
• if the set doesn’t contain key k, then $T[k] = \text{NIL}$.
hash tables

• if $|U|$ is large, an array of size $|U|$ might be impractical/impossible
• idea: the number of keys actually used n might be much smaller than $|U|$?
• we can thus reduce the storage requirement while still achieving the efficiency
• hash table: store n items of K in a table T of size m ($m \ll |U|$)
• hash function h determines where to put an item ($h: U \rightarrow \{0,1,\ldots,m-1\}$)
• issues
 • what to do when two items hash to same location (collision)
 • how to choose good hash function h (minimize collisions)
 • how to choose table size m
 • dynamically increase table size
 • important in databases but not addressed here
collision resolution

• what to do with two items x and y that hash to same location?
• $h(x.key) = h(y.key)$

• open addressing
 • look at other locations in the table
 • table might overflow
 • more complicated

• closed addressing
 • all items that hash to location t stay there in some structure
 • bucket, linked list, ...
chaining

• first: simple version of chaining
• table T with m slots, each containing a linked list
• hash function h maps keys to \{0, 1, \ldots, m-1\}
• INSERT(T, x): put x in a node at the head of T[h(x.key)]
• SEARCH(T,k): search for an item with key k in the list T[h(k)]
• DELETE(T,x): delete x from the list T[h(x.key)] (done in O(1) with doubly linked list)

• load factor: \(\alpha = n/m \), where \(n \) is the number of items in the set.
• simple uniform hashing (ideal): search time is 1 + \(\Theta(\alpha) \) (average-case)
• also called closed addressing (since item stored at that location)
choosing a hash function

• let k be the key and T a table of size m
• want $h(k)$ to distribute keys uniformly across locations \{0,1,...,m-1\} (i.e., approximate the simple uniform hashing)
• division method: $h(k) = k \mod m$
 • choice of table size m important
 • if $m=2^p$, then only low order bits of k matter (poor choice)
 • if k not distributed well, then $h(k)$ prone to be biased
 • best if m a prime
multiplication method

• pick constant A with $0<A<1$

• $h(k) = \lfloor m \cdot ((k \cdot A) \mod 1) \rfloor$ (here “mod 1” means fractional part of real number)

• Knuth suggests $A = \frac{\sqrt{5} - 1}{2} \approx 0.6180339 \ldots$

• nice example on p 264 of text
universal hashing

• problem with fixed hash function: all keys might hash to same slot
• universal hashing: family of hash functions \(\mathcal{H} \), maps key universe \(U \) onto \(\{0, 1, \ldots, m-1\} \)
• remark: no single input will always exhibit worst-case behavior (good average-case performance)
• want for any \(k, l \in U \) that the number of \(h \in \mathcal{H} \) such that \(h(k) = h(l) \) is at most \(\frac{|\mathcal{H}|}{m} \) (universal hashing)
• idea is to pick an \(h \in \mathcal{H} \) randomly if possible
• intuitively if keys \(k \in U \) not distributed well a random \(h \in \mathcal{H} \) will still distribute the locations well and excess avoid collision
• example family: \(\mathcal{H} \) will depend on fixed \(p, m \)
 • \(m \) is table size, \(p > m \) is a prime so that all keys \(k < p \)
 • choose \(a, b \) with \(0 < a < p, b < p \) (randomly)
 • \(h(k) = ((ak+b) \mod p) \mod m \)
 • proof that \(\mathcal{H} \) is universal in text, depending on basic number theory (nice proof)
back to collision resolution: open addressing

• instead of using lists in chaining, all elements are stored in the hash table, so no storage requirement for points, saving spaces to reduce collisions

• for key $k=x\cdot key$, if location $T[h(k)]$ is full (via collision), need to put x in a different location

• look in a sequence of locations depending on k. This is called the probe sequence

• using the hash function $h<k,i>$ to determine the slot to probe at time i on key k

• look in locations $h<k,0>$, $h<k,1>$, $h<k,2>$, ... until find empty slot in which to place x

• requirement: for every key k, $(h<k,0>$, $h<k,1>$, ..., $h<k,m-1>)$ be a permutation of $(0,1,...,m-1)$ so every position of the hash table is considered eventually
strategies for probe sequences

• simplest (and worst): *linear probing*
 - $h_{k,i} = (h(k)+i) \mod m$
 - that is, if $h(k)$ is full, look in locations $h(k)+1$, $h(k)+2$, $h(k)+3$, ...
 - problem: primary clustering (slots are clustered in long lines)

• quadratic probing
 - pick constants c, d
 - $h_{k,i} = (h(k) + c*i + d*i^2) \mod m$
 - c, d, m need to be chosen carefully so that $h_{k,i}$ can probe entire table
 - problem: secondary clustering (milder than primary clustering)

• double hashing (the current best one)
 - use two hash functions h_1, h_2
 - $h_{k,i} = (h_1(k) + i*h_2(k)) \mod m$
 - need m and $h_2(k)$ to be relatively prime
other uses of hash functions

• database indexing
 • need extendible hash tables as many insertions happen
 • not good for range queries ("find all values between a and b")
 • B-tree indexes more popular

• cryptographically secure hashing
 • password files
 • multi-party communication
 • hash functions very different looking

• Bloom filters, count-min sketch
count-min sketch

• problem: count events in a data-stream, many possible events (n large), want number of occurrences of each event
• conventional data structure too large
• count-min sketch is probabilistic structure, uses sub-linear space
• idea: table size of w columns and d rows
• each row j associates with hash function h_j mapping to $\{0,1,...,w-1\}$
• when event e occurs, increment location $[j, h_j(e)]$
• estimate of number of occurrences of a is the min of all locations $[j, h_j(e)]$
count-min sketch (cont’d)

Algorithm 1 Count-Min Sketch

insert(x):
for $i = 1$ to d do
 $M[i, h_i(x)] \leftarrow M[i, h_i(x)] + 1$
end for

query(x):
$c = \min \{M[i, h_i(x)] \text{ for all } 1 \leq i \leq d\}$
return c

```
\[
\begin{array}{cccccccc}
\text{hash } h_1 & M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} & \cdots & M_{1n} \\
\text{hash } h_2 & M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & \text{**M_{26}**} & \cdots & M_{2n} \\
\text{hash } h_3 & M_{31} & M_{32} & \text{**M_{33}**} & M_{34} & M_{35} & M_{36} & \cdots & M_{3n} \\
\end{array}
\]
```
properties of count-min

- use $O(1)$ in both time and space (no new memory allocation when (many) events are added
- good for parallelization
- never underestimate the numbers of occurred events
binary search trees

• chapter 12
• we will look at
 • definitions
 • properties
 • operations: insert, delete, search
 • traversals: inorder, postorder, preorder, level order
 • worst case behavior
 • average case behavior
• then move onto self-balancing BSTs: red-black, 2-3, 2-3-4, ...
various trees

• free tree
• rooted tree
• ordered tree
• binary tree
• binary search tree
 • (search property) let x be a node in a BST. If y is a node in the left subtree of x, then y.key <= x.key. If y is in the right subtree of x, then y.key >= x.key
assorted facts and definitions

• any tree with n nodes has n-1 edges
• a binary tree with left/right pointers and n nodes has n+1 null pointers
• a full binary tree with n internal nodes has n+1 external nodes
• full binary tree: all nodes have either 2 children (the internal nodes) or 0 children (external)
• a binary tree of n nodes has height at least $\lg n$ and at most n-1
• height = distance of node from bottom, depth = distance from top
facts, defs cont’d

• internal path length (I): sum of the depths of all the nodes
• external path length (E): sum of the depths of the nulls (externals)
• fact: $E = I + 2n$ (nice exercise)
• I corresponds to successful search in BST, average search time is $1 + \frac{I}{n}$
• E corresponds to unsuccessful search, average failed search time is $\frac{E}{n+1}$
• worst case tree: skew tree (every node has just one child)
sample BST
BST operations

• find(x)
• insert(x): find a null and put it there
• successor(x)
 • successor(10)=11, successor(15)=17
 • algorithm?
 • if x has right child, go right once, then left until end
 • otherwise, follow parent links until “right” turn
• delete(x): how?
 • if 0 children, remove
 • if 1 child, splice out
 • if 2 children, replace with successor value, then remove successor node
walks

• inorder
 • 1 3 4 5 7 8 9 10 11 12 13 15 17 18 20 23

• preorder
 • 12 10 5 3 1 4 8 7 9 11 17 13 15 20 18 23

• postorder
 • 1 4 3 7 9 8 5 11 10 15 13 18 23 20 17 12
randomly built BST

• we have n values and will insert them one-by-one into a BST
• what will that BST look like?
• there are n! permutations of the input
 • we assume each one equally likely
• how many BST shapes can there be?
 • Catalan number, which is \(\frac{1}{n+1} \binom{2n}{n} = \Omega \left(\frac{4^n}{n^2} \right) \)
 • (hard!)
counting permutations for a tree

• given a tree shape T we can determine the number of permutations which, if inserted into empty BST, would end up with that tree
• build up number bottom up
• at node x, suppose left subtree of x has n nodes and is generated by r permutations, and
• right subtree has m nodes and is generated by s permutations
• the subtree rooted at x
 • has n+m+1 nodes
 • is generated by $\binom{n+m}{n} \cdot r \cdot s$ permutations
• left side generated by 1 permutation: 13 15
• right side by two
 • 20 18 23
 • 20 23 18
• for full tree, pick one permutation each for the left and right sides
• permutation for the whole tree must start with 17 followed by n+m = 2+3 = 5 spaces
 • 17 __ __ __ __ __
• choose two for them for the left tree, which can be done in $\binom{5}{2} = 10$ ways
• example: 2nd and 5th positions
 • 17 __ 13 __ __ 15
• either of the two remaining perms can go in remaining three slots
 • 17 20 13 18 23 15
 • 17 20 13 23 18 15
• total number of permutations for whole tree:
 \[1 \cdot 2 \cdot \binom{5}{2} = 20 \]

intuition: balanced trees more “likely”
back to sorting theme

• we can build an abstract sort method based on BST
• given unsorted list, insert all values into empty BST
• perform inorder walk

BST SORT
** input list a=(a_1,a_2,...,a_n)
create BST T

for i=1 to n
 T.insert(a_i)

perform T.inorder
 when visiting a node, store value in list b

return b

this part is O(n)
expected behavior

• if list a is chosen randomly from among all n! permutations
• how long does “for i=1 to n T.insert(a_i)” take?
• worst case: O(n^2)
• want to argue: on average O(n \lg n)

• main fact: expected search time (1+1/n) in BST built from randomly chosen permutation is
 \[2 \cdot \ln(n + 1) + O(1) \approx 1.38 \log_2 n + O(1) \]
describe a binary search tree on n nodes such that the average depth of a node in the tree is $\Theta(\lg n)$ but the height of the tree is $\omega(\lg n)$