CIS 313: Intermediate Data Structure

week of Jan 21
third week of the term
binary heap implementation of PQ

• most common implementation
• operations are $O(\log n)$
• uses a binary tree structure
• except that the tree is stored in an array with no pointers
• it is an *implicit* tree, children and parents inferred from location in array

• PQSort becomes *heapsort*
binary heap

• stored in array

• item located in position \(i \)
 • parent in location \([i/2]\)
 • left child in position \(2i\)
 • right child in position \(2i + 1\)

• tree is complete
 • all nodes have two children, except maybe parent of “last” one

• tree maintains heap property
 • value stored at location \(i \) is greater than or equal to values stored in both its children

• fact: a binary heap with \(n \) elements has the height of \(\lceil \lg n \rceil \) (why?)
binary heap insertion

• put new value x at end of array, extending its size by 1
• value x is now viewed as being at the bottom of the tree
• if x violates heap property (if larger than parent), swap with parent
• repeat until no violation
• time is proportional to height of tree, which is $O(lg \; n)$

• text handles this differently, they insert $-\infty$ and then use heap-increase-key to the new value
pseudo-code for insert

insert(x):

heapsize++
A[heapsize]=x

i = heapsize
while i>1 and A[i]>A[parent(i)]
 swap A[i] and A[parent(i)]
 i = parent(i)

sometimes called “sift-up” or “bubble-up”
Binary Heap: Insert Operation

1. Insert 14 into the heap.

```
|   16 |
| 11   |
| 12   |
| 4    |
| 5    |
| 6    |
| 7    |
| 8    |
| 10   |
| 9    |
| 14   |
```

2. After inserting 14, reorganize the heap.

```
|   16 |
| 11   |
| 12   |
| 4    |
| 5    |
| 6    |
| 7    |
| 8    |
| 10   |
| 9    |
| 14   |
```

3. Viewed as an array:

```
1 2 3 4 5 6 7
16 11 12 8 10 9 14
```

4. Viewed as a binary tree:

```
16
|--- 11
|   |--- 12
|   |   |--- 4
|   |   |   |--- 8
|   |   |   |   |--- 10
|   |   |   |   |   |--- 9
|   |   |   |   |   |   |--- 14
```

```
16
|--- 11
|   |--- 12
|   |   |--- 4
|   |   |   |--- 8
|   |   |   |   |--- 10
|   |   |   |   |   |--- 9
|   |   |   |   |   |   |--- 14
```
heap extract-max (deletion)

• similar but element moves down
• idea: remove and return root (in location 1 of the tree)
• move rightmost element into that empty location ...
• ... and reduce the heapsize
• tree shape is maintained but root location may violate heap property
• note: rest of tree still has heap property
• swap node with larger (why) of it’s children
• repeat while heap property violated until leaf hit
• called “sift-down” or “bubble-down”
text algorithm

```plaintext
Max-Heapify(A, i)
    // Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
    // Output: A modified so that i roots a heap
    // Running Time: O(log n) where n = heap-size[A] - i
    1 l ← LEFT(i)
    2 r ← RIGHT(i)
       4     largest ← l
    5 else largest ← i
       7     largest ← r
    8 if largest ≠ i
       9     exchange A[i] and A[largest]
    10 Max-Heapify(A, largest)
```
first attempt at sorting

1. for each element x, *insert* x into a heap
 • time per insert $O(lg \ n)$, total $O(n \ lg \ n)$
 • this can be made much faster

2. while the heap is not empty, *extract-max*
 • output is a sorted list (reversed)
 • each extract-max is $O(lg \ n)$, total $O(n \ lg \ n)$
 • cannot be made faster

BUILDHEAP uses deletion idea to get linear overall time
buildheap code

```plaintext
BUILD-MAX-HEAP(A)
 // Input: A: an (unsorted) array
 // Output: A modified to represent a heap.
 // Running Time: \( O(n) \) where \( n = \text{length}[A] \)
1    heap-size[A] ← length[A]
2    for i ← [length[A]/2] downto 1
3        MAX-HEAPIFY(A, i)
```

time analysis
if tree has height \(H = \lg n \)
- all nodes at level \(k \) take time \(H-k \) to sift down
- there are \(2^k \) nodes at level \(k \)
- total time is \(\sum_{0}^{H} 2^k (H - k) \)
- can show this is at most \(2n \)

correctness
- idea sort of clear, build heaps bottom up
- text uses loop invariant!!
grinding through the time bound

\[
\sum_{k=0}^{H} 2^k (H - k) = 2^H \sum_{k=0}^{H} \left(\frac{2^k}{2^H}\right)(H - k)
\]

\[
= n \cdot \sum_{k=0}^{H} \frac{1}{2^{H-k}} (H - k)
\]

\[
= n \cdot \sum_{i=0}^{H} \frac{i}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{i}{2^i} = 2 \cdot n
\]

\[
2^H \approx 2^{\log_2 n} = n
\]

why just 2?
• mentioned but not proved in appendix
• “fun” to derive
• can also take derivative of \(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \)
now heapsort

```
HEAP-SORT(A)

// Input: A: an (unsorted) array
// Output: A modified to be sorted from smallest to largest
// Running Time: $O(n \log n)$ where $n = \text{length}[A]
1 Build-Max-Heap(A)
2 for i = \text{length}[A] downto 2
3 exchange A[1] and A[i]
4 heap-size[A] ← heap-size[A] - 1
5 Max-Heapify(A, 1)
```

step 1: $\Theta(n)$ time
steps 2-5: $\Theta(n \log n)$ time
other heap operation: increase-key

• an item can be increased in $O(\lg n)$ time
• after the increase, it would need to be sifted up as in the insert method
• the same applies to the decrease-key operation in a min heap
• this operation is a crucial step in Dijkstra’s method (shortest path) and Prim’s method (minimum spanning tree)
• it can be implemented in $O(1)$ amortized time using Fibonacci heaps

• we will not cover Fibonacci heaps, but next we look at a similar and simpler structure: binomial heaps
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
union of binary heaps

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
<th>Binomial heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(lg \ n)$</td>
<td>$O(lg \ n)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
<td>$O(lg \ n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
<td>$O(lg \ n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
</tr>
</tbody>
</table>
small digression: ordered trees

ordered tree:
- tree has designated root
- a node can have any number of children
- if a node has k children, they are ordered
 - 1st child, 2nd child, ..., kth child
- good representation involves two pointers per node:
 - first-child and next-sibling
 - so the children of a node are in a linked list
binomial trees

• a *binomial heap* will be a collection of binomial trees with the heap property
• so we need to define a *binomial tree* first
• a binomial tree is defined recursively:
 • a B_0 tree is a single node (height 0)
 • a B_k tree consists of a B_{k-1} tree whose root has another B_{k-1} tree as a child

• a B_k tree contains 2^k nodes
• the height of the tree is k
• the number of nodes on level j of a B_k tree is the binomial coefficient $\binom{k}{j}$
• the root has degree k, which is greater than the degree of any other node; moreover if the children of the root are numbered from left to right by $k - 1, k - 2, \ldots, 0$, then child i is the root of a subtree B_i
these trees will be represented using the first-child next sibling representation of ordered trees.

one node will have three points:
- one points to the parent of the node
- one points to its leftmost child
- one points to its sibling immediately on the right
binomial heap

• collection of binomial trees, satisfying:
 • each binomial tree satisfy the heap property (values of parents less or equal to values at the children)
 • there is at most one binomial tree whose root has a given degree
• min value could be at root of one of the trees
• if n nodes stored, then $\lg n$ trees used, corresponds to binary representation of n
• example: if $n=13$, need B_0, B_2, B_3 trees (containing 1, 4, 8 nodes)
• $n=13=(1101)_2$ in base 2
merge two B_k trees

- two B_k trees can be merged into a B_{k+1} tree
- look at the two roots ...
- ... the root with larger value becomes child of root with smaller value
- easy since children of root given in linked list
- result is B_{k+1} tree
main operation: union of two binomial heaps

• two heaps of sizes \(n \) and \(m \) can be merged in time \(O(\lg n + \lg m) \)

• idea is simple:
 • for \(k=0, 1, 2, \ldots \)
 • scan through each heap’s tree list
 • if there are two \(B_k \) trees, merge them together into a \(B_{k+1} \) tree
 • \(\text{(note 1): one of the } B_k \text{ trees might be the result of an earlier merge} \)
 • \(\text{(note 2): there might be three } B_k \text{ trees, one each from the two heaps and one}
 \text{from an earlier merge – pick the two later trees– similar to a carry bit) } \)

• operation parallels closely addition in binary
main operation: union of two binomial heaps

```
BINOMIAL-HEAP-UNION(H1, H2)
1  H ← MAKE-BINOMIAL-HEAP()
2  head[H] ← BINOMIAL-HEAP-MERGE(H1, H2)
3  free the objects H1 and H2 but not the lists they point to
4  if head[H] = NIL
5    then return H
6  prev-x ← NIL
7  x ← head[H]
8  next-x ← sibling[x]
9  while next-x ≠ NIL
10  do if (degree[x] ≠ degree[next-x]) or
8     (sibling[next-x] ≠ NIL and degree[sibling[next-x]] = degree[x])
11    then prev-x ← x
12    x ← next-x
13  else if key[x] ≤ key[next-x]
14    then sibling[x] ← sibling[next-x]  ▷ Case 3
15    BINOMIAL-LINK(next-x, x)  ▷ Case 3
16  else if prev-x = NIL  ▷ Case 4
17    then head[H] ← next-x
18  else sibling[prev-x] ← next-x  ▷ Case 4
19    BINOMIAL-LINK(x, next-x)  ▷ Case 4
20  x ← next-x
21  next-x ← sibling[x]
22  return H
```
(a) \(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_{l} \quad B_k \)
\(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_{l} \quad B_k \)
\(\text{Case 1} \)

(b) \(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_k \quad B_k \)
\(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_k \quad B_k \)
\(\text{Case 2} \)

(c) \(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_{l} \quad B_k \)
\(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_{l} \quad B_k \)
\(\text{Case 3} \)

\(\text{key}[x] \leq \text{key}[\text{next-}x] \)

(d) \(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_{l} \quad B_k \)
\(\cdots \xrightarrow{\text{prev-}x} a \xrightarrow{x} b \xrightarrow{x} c \xrightarrow{x} d \xrightarrow{\text{next-}x} \cdots \)
\(B_k \quad B_k \quad B_{l} \quad B_k \)
\(\text{Case 4} \)

\(\text{key}[x] > \text{key}[\text{next-}x] \)

\(B_k \quad B_{k+1} \)

\(B_k \quad B_{k+1} \)
example union

\[1011 + 0011 = 1110 \]

\[11 + 3 = 14 \]
other operations “reduce” to union

• insertion:
 • to insert x into heap H
 • create heap H’ consisting of only x
 • perform union of H and H’

• time $O(\log n)$
 • actually not so bad if many insertions performed
 • a sequence of n insertions into an initially empty heap uses $O(n)$ time
 • similar: n increments (by one) of a binary counter (initially zero) makes $O(n)$ bit flips

• analysis: we saw something like $\sum_{i=0}^{\log n} i2^{-i} = O(n)$ with the BuildHeap routine
extract-min

- the min is the root of one of the trees in the binomial heap H
- suppose it’s a B_k tree with root x
 - pull the tree with root x out of H
 - the children of x form a binomial heap H'
 - (H' will have one each of a B_0, B_1, ..., B_{k-1} tree)
 - perform a union H' and the reminder of H
 - return key of x

- $O(lg n)$ time
1 is the min of H

pull out the tree with 1 as root

remove 1 and look at its child list as heap H'

get union of H' with remaining heap H