CIS 313: Intermediate Data Structure
week of Jan 21
third week of the term
binary heap implementation of PQ

- most common implementation
- operations are $O(\log n)$
- uses a binary tree structure
- except that the tree is stored in an array with no pointers
- it is an *implicit* tree, children and parents inferred from location in array

- PQSort becomes *heapsort*
binary heap

• stored in array

• item located in position i
 • parent in location $[i/2]$
 • left child in position $2i$
 • right child in position $2i + 1$

• tree is complete
 • all nodes have two children, except maybe parent of “last” one

• tree maintains heap property
 • value stored at location i is greater than or equal to values stored in both its children

• fact: a binary heap with n elements has the height of $\lceil \lg n \rceil$ (why?)
binary heap insertion

• put new value x at end of array, extending its size by 1
• value x is now viewed as being at the bottom of the tree
• if x violates heap property (if larger than parent), swap with parent
• repeat until no violation
• time is proportional to height of tree, which is $O(lg \ n)$

• text handles this differently, they insert $-\infty$ and then use heap-increase-key to the new value
pseudo-code for insert

```
insert(x):
    heapsize++
    A[heapsize]=x
    i = heapsize
    while i>1 and A[i]>A[parent(i)]
        swap A[i] and A[parent(i)]
        i = parent(i)
```
Binary Heap: Insert Operation

Viewed as a binary tree:

1
 /
2 16
 /
3 11
 /
4 12
 /
5 11
 /
6 14
 /
7

1 2 3 4 5 6 7
16 11 12 8 10 9 14

Viewed as an array:

1 2 3 4 5 6 7
16 11 12 8 10 9 14

1 2 3 4 5 6 7
16 11 14 8 10 9 12
heap extract-max (deletion)

• similar but element moves down
• idea: remove and return root (in location 1 of the tree)
• move rightmost element into that empty location ...
• ... and reduce the heapsize
• tree shape is maintained but root location may violate heap property
• note: rest of tree still has heap property
• swap node with larger (why) of it’s children
• repeat while heap property violated until leaf hit
• called “sift-down” or “bubble-down”
Max-Heapify(A, i)

// Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
// Output: A modified so that i roots a heap
// Running Time: O(log n) where n = heap-size[A] – i
1 l ← LEFT(i)
2 r ← RIGHT(i)
4 largest ← l
5 else largest ← i
7 largest ← r
8 if largest ≠ i
9 exchange A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)
first attempt at sorting

1. for each element x, insert x into a heap
 - time per insert $O(lg \ n)$, total $O(n \ lg \ n)$
 - this can be made much faster

2. while the heap is not empty, extract-max
 - output is a sorted list (reversed)
 - each extract-max is $O(lg \ n)$, total $O(n \ lg \ n)$
 - cannot be made faster

BUILDHEAP uses deletion idea to get linear overall time
buildheap code

```c
BUILD-MAX-HEAP(A)
    // Input: A: an (unsorted) array
    // Output: A modified to represent a heap.
    // Running Time: O(n) where n = length[A]
1    heap-size[A] ← length[A]
2    for i ← [length[A]/2] downto 1
3        MAX-HEAPIFY(A, i)
```

time analysis
if tree has height H=\lceil \log n \rceil
• all nodes at level k take time H-k to sift down
• there are \(2^k\) nodes at level k
• total time is \(\sum_{0}^{H} 2^k (H - k)\)
• can show this is at most 2n

correctness
• idea sort of clear, build heaps bottom up
• text uses loop invariant!!
grinding through the time bound

$$\sum_{k=0}^{H} 2^k (H - k) = 2^H \sum_{k=0}^{H} (2^k / 2^H)(H - k)$$

$$= n \cdot \sum_{k=0}^{H} \frac{1}{2^{H-k}} (H - k)$$

$$= n \cdot \sum_{i=0}^{H} \frac{i}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{i}{2^i} = 2 \cdot n$$

$2^H \approx 2^{\log_2 n} = n$

why just 2?
- mentioned but not proved in appendix
- “fun” to derive
- can also take derivative of $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$
now heapsort

```
HEAP-SORT(A)
   // Input: A: an (unsorted) array
   // Output: A modified to be sorted from smallest to largest
   // Running Time: $O(n \log n)$ where $n = \text{length}[A]
1    BUILD-MAX-HEAP(A)
2   for $i = \text{length}[A]$ downto 2
3       exchange $A[1]$ and $A[i]$
4    heap-size[A] ← heap-size[A] − 1
5    MAX-HEAPIFY(A, 1)
```

step 1: $\Theta(n)$ time
steps 2-5: $\Theta(n \log n)$ time
other heap operation: increase-key

• an item can be increased in $O(\lg n)$ time
• after the increase, it would need to be sifted up as in the insert method
• the same applies to the decrease-key operation in a min heap
• this operation is a crucial step in Dijkstra’s method (shortest path) and Prim’s method (minimum spanning tree)
• it can be implemented in $O(1)$ amortized time using Fibonacci heaps

• we will not cover Fibonacci heaps, but next we look at a similar and simpler structure: binomial heaps
Summary

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>INSERT</td>
<td>(\Theta(\lg n))</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>(\Theta(\lg n))</td>
</tr>
<tr>
<td>UNION</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>(\Theta(\lg n))</td>
</tr>
<tr>
<td>DELETE</td>
<td>(\Theta(\lg n))</td>
</tr>
</tbody>
</table>
union of binary heaps

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
<th>Binomial heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(lg\ n)$</td>
<td>$O(lg\ n)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
<td>$O(lg\ n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(lg\ n)$</td>
<td>$\Theta(lg\ n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
<td>$O(lg\ n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(lg\ n)$</td>
<td>$\Theta(lg\ n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(lg\ n)$</td>
<td>$\Theta(lg\ n)$</td>
</tr>
</tbody>
</table>
small digression: ordered trees

ordered tree:
• tree has designated root
• a node can have any number of children
• if a node has k children, they are ordered
 • 1st child, 2nd child, ..., kth child
• good representation involves two pointers per node:
 • first-child and next-sibling
 • so the children of a node are in a linked list
binomial trees

• a binomial heap will be a collection of binomial trees with the heap property
• so we need to define a binomial tree first
• a binomial tree is defined recursively:
 • a B₀ tree is a single node (height 0)
 • a Bₖ tree consist of a Bₖ₋₁ tree whose root has another Bₖ₋₁ tree as a child

• a Bₖ tree contains 2ᵏ nodes
• the height of the tree is k
• the number of nodes on level j of a Bₖ tree is the binomial coefficient \(\binom{k}{j} \)
• the root has degree k, which is greater than the degree of any other node; moreover if the children of the root are numbered from left to right by \(k - 1, k - 2, \ldots, 0 \), then child \(i \) is the root of a subtree Bᵢ
these trees will be represented using the first-child next sibling representation of ordered trees.

One node will have three points:
- one points to the parent of the node
- one points to its leftmost child
- one points to its sibling immediately on the right
binomial heap

• collection of binomial trees, satisfying:
 • each binomial tree satisfy the heap property (values of parents less or equal to values at the children)
 • there is at most one binomial tree whose root has a given degree
• min value could be at root of one of the trees
• if n nodes stored, then $\lg n$ trees used, corresponds to binary representation of n
• example: if $n=13$, need B_0, B_2, B_3 trees (containing 1, 4, 8 nodes)
• $n=13=(1101)_2$ in base 2
merge two B_k trees

- two B_k trees can be merged into a B_{k+1} tree
- look at the two roots …
- … the root with larger value becomes child of root with smaller value
- easy since children of root given in linked list
- result is B_{k+1} tree
main operation: union of two binomial heaps

- two heaps of sizes n and m can be merged in time $O(lg n + lg m)$
- idea is simple:
 - for $k=0, 1, 2, \ldots$
 - scan through each heap’s tree list
 - if there are two B_k trees, merge them together into a B_{k+1} tree
 - (*note 1: one of the B_k trees might be the result of an earlier merge*)
 - (*note 2: there might be three B_k trees, one each from the two heaps and one from an earlier merge – pick the two later trees– similar to a carry bit*)
- operation parallels closely addition in binary
main operation: union of two binomial heaps

```
BINOMIAL-HEAP-UNION(H_1, H_2)
1   H ← MAKE-BINOMIAL-HEAP()
2   head[H] ← BINOMIAL-HEAP-MERGE(H_1, H_2)
3   free the objects H_1 and H_2 but not the lists they point to
4   if head[H] = NIL
5       then return H
6   prev-x ← NIL
7   x ← head[H]
8   next-x ← sibling[x]
9   while next-x ≠ NIL
10       do if (degree[x] ≠ degree[next-x]) or
11           (sibling[next-x] ≠ NIL and degree[sibling[next-x]] = degree[x])
12           then prev-x ← x
13           x ← next-x
14       else if key[x] ≤ key[next-x]
15           then sibling[x] ← sibling[next-x]
16           BINOMIAL-LINK(next-x, x)
17       else if prev-x = NIL
18           then head[H] ← next-x
19       else sibling[prev-x] ← next-x
20       BINOMIAL-LINK(x, next-x)
21   next-x ← sibling[x]
22   return H
```
example union

\[
\begin{array}{c}
1011 \\
+ 0011 \\
\hline
1110
\end{array}
\]

\[
\begin{array}{c}
11 \\
+ 3 \\
\hline
14
\end{array}
\]
other operations “reduce” to union

- insertion:
 - to insert x into heap H
 - create heap H’ consisting of only x
 - perform union of H and H’
- time $O(\log n)$
 - actually not so bad if many insertions performed
 - a sequence of n insertions into an initially empty heap uses $O(n)$ time
 - similar: n increments (by one) of a binary counter (initially zero) makes $O(n)$ bit flips
- analysis: we saw something like $\sum_{i=0}^{\log n} i2^{-i} = O(n)$ with the BuildHeap routine
extract-min

- the min is the root of one of the trees in the binomial heap H
- suppose it’s a B_k tree with root x
 - pull the tree with root x out of H
 - the children of x form a binomial heap H'
 - $(H'$ will have one each of a B_0, B_1, ..., B_{k-1} tree)
 - perform a union H' and the reminder of H
 - return key of x
- $O(lg \ n)$ time
1 is the min of H

pull out the tree with 1 as root

remove 1 and look at its child list as heap H’

get union of H’ with remaining heap H