CIS 313: Intermediate Data Structure

week of Jan 14

second week of the term
algorithm time bounds

Let \mathcal{A} be some algorithm operating on an input x

- **worst case**
 - \mathcal{A} has worst case time $O(t(n))$ if there are constants c and N such that for all $n>N$ and all inputs x of length n, \mathcal{A} completes its computation on input x using at most $c \cdot t(n)$ steps
 - \mathcal{A} has worst case time $\Omega(t(n))$ if there are constants c and N such that for all $n>N$ there exists an input x of length n such that \mathcal{A} uses at least $c \cdot t(n)$ steps to finish its computation on x

- **average case**
- **expected case** *(a measure that makes sense if algorithm is randomized)*
- **best case** *(not very useful – why?)*
- **smoothed analysis** *(complicated)*
linear data structures

Our basic structures: quick review

• arrays
• linked lists
• stacks
• queues
• priority queue
• binary heap
stacks

• LIFO: last-in first-out
• can implement stack with array, linked list, ...
• uses of stack
 • implement recursion
 • expression evaluation
 • depth-first search
• stack operations
 • push
 • pop
 • top (or peek)
 • init, isEmpty, isFull
example use of stack: evaluate postfix

postfix: operator after the operands
• (2+3)*7 becomes 2 3 + 7 *
• 2+(3*7) is 2 3 7 * +
• no need for parens

to evaluate a postfix expression E:

use operand stack S

for each token x in E, scanning L to R
 if x is operand (value)
 S.push(x)
 else x is operator (+, *, -, ...)
 v=S.pop
 w=S.pop
 z = result of applying operator x to (w,v)
 S.push(z)

return S.pop

note: if try to pop on empty stack, then underflow error and if stack not empty after last pop then overflow error
queues

- FIFO: first-in, first-out
- useful in job scheduling, models “standing in line”
- implementation: linked list, array (wraparound)
- use to compute breadth-first search of tree, graph

- operations
 - enqueue
 - dequeue
 - front, isEmpty, isFull
example with tree: stack vs queue

Consider a tree T consisting of simple nodes p: fields $p.left$, $p.right$, and $p.value$

We have a simple recursive preorder traversal whose initial call is $\text{preorderTrav}(T.root)$

```
\text{preorderTrav}(\text{node } p)
    \text{print } p.value
    \text{if } p.left \neq \text{null}
        \text{preorderTrav}(p.left)
    \text{if } p.right \neq \text{null}
        \text{preorderTrav}(p.right)
```
example with tree (cont’d)

preorder traversal:
A B D I J F C G K H

note
inorder: I D J B F A G K C H
postorder: I J D F B K G H C A
example with tree (cont’d)

implement that traversal with a stack:

stack S of node
S.push(T.root)

while (not S.isEmpty)
 p = S.pop
 print p.value
 if p.right!=null
 S.push(p.right)
 if p.left!=null
 S.push(p.left)

note: need to push the right side first so left side gets visited before it

step through traversal with tree on previous slide
implement that traversal with a queue:

queue Q of node
Q.enqueue(T.root)

while (not Q.isEmpty)
 p = Q.dequeue
 print p.value
 if p.right!=null
 Q.enqueue(p.right)
 if p.left!=null
 Q.enqueue(p.left)

stack S -> queue Q
pop -> dequeue
push -> enqueue

what order do we get with this method?
try example
example with tree (conclusion)

previous queue algorithm gives a (reverse) level-order:
A C B H G F D K J I

nice, somewhat unrelated question,
Reconstruct a binary tree from two of the traversal sequences

element: you are given only
A B D I J F C G K H (preorder)
I D J B F A G K C H (inorder)
now build the tree
priority queues

• chapter 6
• abstract operations (implementation independent)
• maintains a set S of elements
• operations
 • insert(x)
 • max (or returnMax)
 • extractMax (removes it)
 • increaseKey(x, k) (set key of x to a new larger value)
 • -OR- insert, min, extractMin, decreaseKey
can sort with priority queue (assuming the descending order)

\[
PQSort(\text{array } A) \\
//array A has n elements

\text{create PQ Q}

\text{for } i=1 \text{ to } n
\quad Q.\text{insert}(A[i])

\text{for } i = n \text{ down to } 1
\quad A[i] = Q.\text{extractMax}
\]
unordered list implementation of PQ

- simple
- insert(x) is $O(1)$
- extractMax is $O(n)$
- What does PQSort look like?
 - selection sort
 - time $O(n^2)$, work done in second loop
ordered list implementation of PA

• also simple
• insert(x) is $O(n)$
• extractMax is $O(1)$
• What does PQSort look like?
 • insertion sort
 • time $O(n^2)$, work done in first loop
binary heap implementation of PQ

- most common implementation
- operations are $O(\log n)$
- uses a binary tree structure
- except that the tree is stored in an array with no pointers
- it is an *implicit* tree, children and parents inferred from location in array

- PQSort becomes *heapsort*
binary heap

• stored in array
• item located in position i
 • parent in location $[i/2]$
 • left child in position $2i$
 • right child in position $2i + 1$
• tree is complete
 • all nodes have two children, except maybe parent of “last” one
• tree maintains heap property
 • value stored at location i is greater than or equal to values stored in both its children
• fact: a binary heap with n elements has the height of $[\lg n]$ (why?)