algorithm time bounds

Let \mathcal{A} be some algorithm operating on an input x

• worst case
 • \mathcal{A} has worst case time $O(t(n))$ if there are constants c and N such that for all $n>N$ and all inputs x of length n, \mathcal{A} completes its computation on input x using at most $c \cdot t(n)$ steps
 • \mathcal{A} has worst case time $\Omega(t(n))$ if there are constants c and N such that for all $n>N$ there exists an input x of length n such that \mathcal{A} uses at least $c \cdot t(n)$ steps to finish its computation on x

• average case
• expected case (a measure that makes sense if algorithm is randomized)
• best case (not very useful – why?)
• smoothed analysis (complicated)
Our basic structures: quick review

• arrays
• linked lists
• stacks
• queues
• priority queue
• binary heap
stacks

• LIFO: last-in first-out
• can implement stack with array, linked list, ...
• uses of stack
 • implement recursion
 • expression evaluation
 • depth-first search
• stack operations
 • push
 • pop
 • top (or peek)
 • init, isEmpty, isFull
example use of stack: evaluate postfix

<table>
<thead>
<tr>
<th>postfix: operator after the operands</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (2+3)*7 becomes 2 3 + 7 *</td>
</tr>
<tr>
<td>• 2+(3*7) is 2 3 7 * +</td>
</tr>
<tr>
<td>• no need for parens</td>
</tr>
</tbody>
</table>

to evaluate a postfix expression E:

use operand stack S

for each token x in E, scanning L to R
 if x is operand (value)
 S.push(x)
 else x is operator (+, *, -, ...)
 v=S.pop
 w=S.pop
 z = result of applying operator x to (w,v)
 S.push(z)

return S.pop

note: if try to pop on empty stack, then underflow error
and if stack not empty after last pop then overflow error
queues

• FIFO: first-in, first-out
• useful in job scheduling, models “standing in line”
• implementation: linked list, array (wraparound)
• use to compute breadth-first search of tree, graph
• operations
 • enqueue
 • dequeue
 • front, isEmpty, isFull
example with tree: stack vs queue

Consider a tree T consisting of simple nodes p: fields p.left, p.right, and p.value

We have a simple recursive preorder traversal whose initial call is preorderTrav(T.root)

preorderTrav(node p)

print p.value
if p.left != null
 preorderTrav(p.left)
if p.right != null
 preorderTrav(p.right)
example with tree (cont’d)

preorder traversal:

A B D I J F C G K H

note

inorder: I D J B F A G K C H
postorder: I J D F B K G H C A
example with tree (cont’d)

Implement that traversal with a stack:

- Stack S of node
- S.push(T.root)

While (not S.isEmpty)
 - $p = S$.pop
 - Print p.value
 - If p.right ≠ null
 - S.push(p.right)
 - If p.left ≠ null
 - S.push(p.left)

Note: need to push the right side first so left side gets visited before it.

Step through traversal with tree on previous slide.
example with tree (cont’d)

Implement that traversal with a queue:

Queue Q of node

Q.enqueue(T.root)

While (not Q.isEmpty)
 p = Q.dequeue
 Print p.value
 If p.right != null
 Q.enqueue(p.right)
 If p.left != null
 Q.enqueue(p.left)

What order do we get with this method?

Try example
example with tree (conclusion)

previous queue algorithm gives a (reverse) level-order:
A C B H G F D K J I

nice, somewhat unrelated question,
Reconstruct a binary tree from two of the traversal sequences

example: you are given only
A B D I J F C G K H (preorder)
I D J B F A G K C H (inorder)
now build the tree
priority queues

• chapter 6
• abstract operations (implementation independent)
• maintains a set S of elements
• operations
 • $\text{insert}(x)$
 • max (or returnMax)
 • extractMax (removes it)
 • $\text{increaseKey}(x,k)$ (set key of x to a new larger value)
 • -OR- insert, min, extractMin, decreaseKey
can sort with priority queue (assuming the descending order)

```plaintext
PQSort(array A)
//array A has n elements
create PQ Q
for i=1 to n
    Q.insert(A[i])
for i = n down to 1
    A[i] = Q.extractMax
```

cannot analyze time without implementation
unordered list implementation of PQ

- simple
- insert(x) is $O(1)$
- extractMax is $O(n)$
- What does PQSort look like?
 - selection sort
 - time $O(n^2)$, work done in second loop
ordered list implementation of PA

• also simple
• insert\((x) \) is \(O(n) \)
• extractMax is \(O(1) \)
• What does PQSort look like?
 • insertion sort
 • time \(O(n^2) \), work done in first loop
binary heap implementation of PQ

- most common implementation
- operations are $O(\log n)$
- uses a binary tree structure
- except that the tree is stored in an array with no pointers
- it is an *implicit* tree, children and parents inferred from location in array

- PQSort becomes *heapsort*
binary heap

- stored in array
- item located in position i
 - parent in location $[i/2]$
 - left child in position $2i$
 - right child in position $2i + 1$
- tree is complete
 - all nodes have two children, except maybe parent of “last” one
- tree maintains heap property
 - value stored at location i is greater than or equal to values stored in both its children
- fact: a binary heap with n elements has the height of $\lceil \log n \rceil$ (why?)
binary heap insertion

• put new value x at end of array, extending its size by 1
• value x is now viewed as being at the bottom of the tree
• if x violates heap property (if larger than parent), swap with parent
• repeat until no violation
• time is proportional to height of tree, which is $O(lg n)$

• text handles this differently, they insert $-\infty$ and then use heap-increase-key to the new value
pseudo-code for insert

```
insert(x):
    heapsize++
    A[heapsize]=x
    i = heapsize
    while i>1 and A[i]>A[parent(i)]
        swap A[i] and A[parent(i)]
        i = parent(i)
```

sometimes called “sift-up” or “bubble-up”
Binary Heap: Insert Operation

1. Insert 16
2. Insert 14

Viewed as a binary tree:

- Left:
 - 16
 - 11 (2)
 - 8
- Right:
 - 16
 - 12 (3)
 - 7

Viewed as an array:

- Left:
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 16
 - 11
 - 12
 - 8
- Right:
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 16
 - 11
 - 14
 - 8
 - 10
 - 9
 - 12
heap extract-max (deletion)

- similar but element moves down
- idea: remove and return root (in location 1 of the tree)
- move rightmost element into that empty location ...
- ... and reduce the heapsize
- tree shape is maintained but root location may violate heap property
- note: rest of tree still has heap property
- swap node with larger (why) of it’s children
- repeat while heap property violated until leaf hit
- called “sift-down” or “bubble-down”
Max-Heapify(A, i)

// Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
// Output: A modified so that i roots a heap
// Running Time: $O(\log n)$ where $n = heap-size[A] - i$

1
2
3 if $l \leq heap-size[A]$ and $A[l] > A[i]$
4 largest ← l
5 else largest ← i
6 if $r \leq heap-size[A]$ and $A[r] < A[largest]$
7 largest ← r
8 if largest ≠ i
9 exchange $A[i]$ and $A[largest]$
10 Max-Heapify(A, largest)
first attempt at sorting

1. for each element x, insert x into a heap
 • time per insert $O(lg \ n)$, total $O(n \ lg \ n)$
 • this can be made much faster

2. while the heap is not empty, extract-max
 • output is a sorted list (reversed)
 • each extract-max is $O(lg \ n)$, total $O(n \ lg \ n)$
 • cannot be made faster

BUILDHEAP uses deletion idea to get linear overall time
buildheap code

```
BUILD-MAX-HEAP(A)
    // Input: A: an (unsorted) array
    // Output: A modified to represent a heap.
    // Running Time: O(n) where n = length[A]
1  heap-size[A] ← length[A]
2  for i ← [length[A]/2] downto 1
3     MAX-HEAPIFY(A, i)
```

correctness
- idea sort of clear, build heaps bottom up
- text uses loop invariant!!

time analysis
if tree has height H=\(\lg n\)
- all nodes at level \(k\) take time \(H-k\) to sift down
- there are \(2^k\) nodes at level \(k\)
- total time is \(\sum_{0}^{H} 2^k (H - k)\)
- can show this is at most \(2n\)
grinding through the time bound

\[\sum_{k=0}^{H} 2^k (H - k) = 2^H \sum_{k=0}^{H} \left(\frac{2^k}{2^H} \right) (H - k) \]

\[= n \cdot \sum_{k=0}^{H} \frac{1}{2^{H-k}} (H - k) \]

\[= n \cdot \sum_{i=0}^{\infty} \frac{i}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{i}{2^i} = 2 \cdot n \]

why just 2?
- mentioned but not proved in appendix
- “fun” to derive
- can also take derivative of \(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \)
now heapsort

Heap-Sort(A)

> **Input:** A: an (unsorted) array
> **Output:** A modified to be sorted from smallest to largest
> **Running Time:** $O(n \log n)$ where $n = \text{length}[A]$

1. **Build-Max-Heap(A)**
2. **for** $i = \text{length}[A]$ **downto** 2
3.
 exchange $A[1]$ and $A[i]$
4.
 $\text{heap-size}[A] \leftarrow \text{heap-size}[A] - 1$
5. **Max-Heapify(A, 1)**

step 1: $\Theta(n)$ time
steps 2-5: $\Theta(n \log n)$ time
other heap operation: increase-key

• an item can be increased in $O(lg n)$ time
• after the increase, it would need to be sifted up as in the insert method
• the same applies to the decrease-key operation in a min heap
• this operation is a crucial step in Dijkstra’s method (shortest path) and Prim’s method (minimum spanning tree)
• it can be implemented in $O(1)$ amortized time using Fibonacci heaps

• we will not cover Fibonacci heaps, but next we look at a similar and simpler structure: binomial heaps
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(\lg n)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(\lg n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(\lg n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(\lg n)$</td>
</tr>
</tbody>
</table>