CIS 313: Intermediate Data Structure

week of Jan 7
Programs = Algorithms + Data Structures
(by Niklaus Wirth)

• From the book
 • Algorithm: any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
 • Data structure: a way to store and organize data in order to facilitate access and modifications.
themes

• computational complexity, start to measure it
• simple data structures (mostly review)
• tree based structures
 • binary trees
 • binary heaps, binomial heaps
 • self adjusting trees: AVL, Red-Black
 • (2,4) trees, B-trees

• sorting, order statistics, voting
First algorithm

find the maximum number in an array

Input: a sequence of numbers $a_1, a_2, ..., a_n$
Output: the maximum number in the input sequence
Algorithm:

```
max = a_1
for i = 2 to n:
    if $a_i > max$:
        max = $a_i$
return max
```

How long does this take?
Maybe: n variable assignments, $n-1$ comparisons, $n-2$ increments, one return?
how do we talk about algorithm speed?

• use functions of the size of the input n (typically the number of input numbers/items in this class), i.e., $T(n)$

• apply asymptotic notation for these functions

• it ignores constants and only focuses on the highest-order term
 • why? machine independence, constants not important asymptotically
 • asymptotically = “in the long run or in the limit”

• see description and definitions in text (section 3.1, pp 43-52)

• O, Ω, Θ, o, ω
<table>
<thead>
<tr>
<th>input size</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>...</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>10^{-5} seconds</td>
<td>2 \cdot 10^{-5} seconds</td>
<td>3 \cdot 10^{-5} seconds</td>
<td>4 \cdot 10^{-5} seconds</td>
<td>5 \cdot 10^{-5} seconds</td>
<td>6 \cdot 10^{-5} seconds</td>
<td>(10^{-4}) seconds</td>
<td></td>
</tr>
<tr>
<td>(n^2)</td>
<td>10^{-4} seconds</td>
<td>4 \cdot 10^{-4} seconds</td>
<td>9 \cdot 10^{-4} seconds</td>
<td>1.6 \cdot 10^{-3} seconds</td>
<td>2.5 \cdot 10^{-3} seconds</td>
<td>3.6 \cdot 10^{-3} seconds</td>
<td>.01 second</td>
<td></td>
</tr>
<tr>
<td>(n^3)</td>
<td>10^{-3} seconds</td>
<td>8 \cdot 10^{-3} seconds</td>
<td>2.7 \cdot 10^{-3} seconds</td>
<td>6.4 \cdot 10^{-2} seconds</td>
<td>.125 second</td>
<td>.216 second</td>
<td>1 second</td>
<td></td>
</tr>
<tr>
<td>(n^{10})</td>
<td>.06 second</td>
<td>58 minutes</td>
<td>6.5 years</td>
<td>3863 centuries</td>
<td>2 \cdot 10^8 centuries</td>
<td>1.3 \cdot 10^{13} centuries</td>
<td>1.6 \cdot 10^{32} centuries</td>
<td></td>
</tr>
<tr>
<td>(2^n)</td>
<td>10^{-3} seconds</td>
<td>1 second</td>
<td>17 minutes</td>
<td>12 days</td>
<td>35.7 years</td>
<td>36,634 years</td>
<td>4 \cdot 10^{14} centuries</td>
<td></td>
</tr>
<tr>
<td>(3^n)</td>
<td>.06 second</td>
<td>58 minutes</td>
<td>6.5 years</td>
<td>3863 centuries</td>
<td>2 \cdot 10^8 centuries</td>
<td>1.3 \cdot 10^{13} centuries</td>
<td>1.6 \cdot 10^{32} centuries</td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>3.6 seconds</td>
<td>773 centuries</td>
<td>8 \cdot 10^{16} centuries</td>
<td>2.6 \cdot 10^{32} centuries</td>
<td>9.7 \cdot 10^{48} centuries</td>
<td>2.6 \cdot 10^{66} centuries</td>
<td>3 \cdot 10^{142} centuries</td>
<td></td>
</tr>
<tr>
<td>(2^{2^n})</td>
<td>>10^{292} centuries</td>
<td>>10^{315637} centuries</td>
<td>ouch!</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
big-Oh formally

\[f(n) = O(g(n)) \text{ if and only if (iff)} \]
\[\exists c > 0 \exists N \forall n \geq N \quad 0 \leq f(n) \leq c \cdot g(n) \]

- \(c \) is the dropped constant
- \(N \) is the crossover point so that ...
- ... if \(n \) is big enough \(f \) is bounded above by \(c \cdot g \)
- the growth rate of \(g \) bounds the growth rate of \(f \) from above

example: let \(f(n) = 3n^3 + 5n^2 + n + 17 \)

some true statements:
- \(f(n) = O(n^3) \)
- \(f(n) = O(n^4) \)
- \(f(n) = O(17 n^3) \)
- \(f(n) = 3n^3 + O(n^2) \)
Big Omega and Theta

\[f(n) = \Omega(g(n)) \text{ iff } \exists c > 0 \exists N \forall n \geq N \ f(n) \geq c \cdot g(n) \geq 0 \]

thus, the growth rate of \(g \) is less than or equal to the growth rate of \(f \) (ignoring the constant)

now we can say \(f(n) = 3n^3 + 5n^2 + n + 17 \)
- \(f(n) = \Omega(n^3) \)
- \(f(n) = \Omega(n^2) \)
- \(f(n) = \Theta(n^3) \)
- \(f(n) = 3 \cdot n^3 + \Theta(n^2) \)

\[f(n) = \Theta(g(n)) \text{ iff } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \]

- here \(f \) and \(g \) have the same growth rate
- sort of like saying \(A \leq B \) and \(A \geq B \) implies that \(A = B \)
$f(n) = \Theta(g(n))$

$f(n) = O(g(n))$

$f(n) = \Omega(g(n))$
little-oh and little-omega

\[f(n) = o(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]

or

\[\forall c > 0 \exists N \forall n \geq N \ 0 \leq f(n) \leq c \cdot g(n) \]

in other words, the growth rate of \(f \) is \textit{strictly less} than that of \(g \)

\[f(n) = \omega(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \]

or

\[\forall c > 0 \exists N \forall n \geq N \ f(n) \geq c \cdot g(n) \geq 0 \]

the growth rate of \(f \) is \textit{strictly greater} than that of \(g \)

\[\frac{1}{n} = o(1) \]

\[f(n) = o(n^2) \]
\[f(n) = \omega(n^4) \]
\[f(n) = 3 \cdot n^3 + o(n^3) \]
some properties

- Transitivity:
 \[f(n) = \alpha(g(n)) \text{ and } g(n) = \alpha(h(n)) \implies f(n) = \alpha(h(n)) \quad (\alpha \in \{O, \Omega, \Theta, o, \omega\}) \]

- Reflexivity:
 \[f(n) = \alpha(f(n)) \quad (\alpha \in \{O, \Omega, \Theta\}) \]

- Symmetry:
 \[f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n)) \]

- Transpose Symmetry:
 \[f(n) = O(g(n)) \iff g(n) = \Omega(f(n)) \]
 \[f(n) = o(g(n)) \iff g(n) = \omega(f(n)) \]
common functions

- n^k, where k is a constant (polynomial)
- 2^n, 3^n, c^n (exponential)
- $\log_2 n$, $\log_c n$, $\ln n$ (logarithmic – usually $\log n$ implies base 2)
 - fact: $\log_2 n = O(\log_c n)$ (why?)
- $O(n \log n)$ (also poly, but very common)
- $n!$ (factorial)
- $2^{(\log n)^2}$ (super-poly, sub-exponential) (ok, not so common)
other functions

• factorials: \(n! = n \cdot (n - 1) \cdot (n - 2) \cdots 3 \cdot 2 \cdot 1 \)

• Stirling’s Approximation: \(n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta\left(\frac{1}{n}\right)) \)

• importantly \(\log n! = \Theta(n \cdot \log n) \)

• binomial coefficients

• Fibonacci sequence: \(F_0 = 0, F_1 = 1, F_{k+2} = F_{k+1} + F_k \)

• (Fibonacci used for AVL trees)
more examples

10 \log n + \log \log n \quad \text{is } \quad O(\log n) \ ? \ O(n) \ ? \ O(n^{0.0000001}) \ ? \ \Omega(\log n) \ ? \ \Omega((\log n)^{0.5}) \ ?

2^{3^{2^{2000}}} \quad \text{is } \quad O(1) \ ? \ \Omega(1) \ ? \ 2^{3^{2^{2000}}} \ n \quad \text{is } \quad O(n) \ ?

\frac{2}{n} \quad \text{is } \quad O(1/n) \ ? \ O(1/\sqrt{n}) \ ? \ O(1/n^{1.7}) \ ? \ O(1) \ ?

f(n) = \begin{cases}
0.1 \ n \ & \text{if } n \text{ is odd} \\
3 \ n^2 \ & \text{if } n \text{ is even}
\end{cases} \quad \text{is } \quad O(n) \ ? \ O(n^{1.5}) \ ? \ O(n^2) \ ? \ \Omega(n) \ ? \ \Omega(n^{1.5}) \ \Omega(n^2) \ ?