implementing an algorithm; type contract; basic code.

(1-3) An approximation for the square root of \(n \) can be generated using the following equation:

\[
x_{k+1} = \frac{1}{2} \left(x_k + \frac{n}{x_k} \right), \text{where } x_0 = 1
\]

Each value of \(x \) should be a better approximation for the square root of \(n \).

Given function \texttt{approx_sqrt}:

```python
def approx_sqrt(n, k):
    '''TYPE CONTRACT GOES HERE
    Generates an approximate square root of num, a positive integer, via an iterative process that runs iterations times. The approximate square root is returned.
    >>> approx_sqrt(1, 1)
    1.0
    >>> approx_sqrt(4, 1)
    2.5
    >>> approx_sqrt(4, 5)
    2.000000000000002
    '''
    value = ??-1
    for _ in range(??-2):
        value = .5 * (value + n/value)
    return value
```

(1) supply the type contract that is consistent with the equation:

a) \((\text{int, int}) \rightarrow \text{float}\)
 b) \((\text{float, float}) \rightarrow \text{int}\)

\[(\text{int, int}) \rightarrow \text{None}\]
\[(\text{str, int}) \rightarrow \text{float}\]

(2) Replace ??-1 with the code needed to implement the approximation.

a).5
 b) 1
 c) k
 d) n
 e) value

(3) Replace ??-2 with the code needed to implement the approximation.

a).5
 b) 1
 c) k
 d) n
 e) value

binary representation of decimal values; binary to decimal conversion.

(4) The decimal representation of binary 1111 is
for loop-sequential operator.

(5) What is the result of executing the following Python code:

```python
>>> for bit in '10':
    if bit not in '01':
        print(False)

?\-1
```

Replace ?\-1 with the result:

a) False b) True c) False d) '01' e) nothing is printed

Assignment and memory management.

(6-7) Given the following Python code:

```python
>>> x = 'CIS 210'
>>> id(x)
4391509160
>>> y = x
>>> id(y)
?\-1
>>> x = 'the end'
>>> id(x)
?\-2
```

(6) 4391509160 refers to a(n)

a) hexadecimal number b) function c) None type d) keyword e) memory location

(7) The value printed at ?\-1 will also be 4391509160 (yes or no); the value printed at ?\-2 will also be 4391509160 (yes or no).

a) yes/yes b) no/no c) yes/no d) no/yes

(8-9) for loop-repeat; accumulator pattern

(8) What will be printed when the following Python code is executed?

```python
n = 5
mysum = 0
for ctr in range(1, n):
    mysum += ctr
print(mysum)

?\-1
```

(8) Replace ?\-1 with the result:

a) 0 b) 5 c) 10 d) 15 e) None
(9) This code is an example of

a) accumulator pattern b) TypeError c) conditional d) indefinite iteration e) infinite loop

Python namespaces; import.

(10) Given the following Python code:

```python
>>> import math
>>> from math import pi
>>> dir()
```

Which of the following would you expect to see in the __main__ namespace after `dir()` is executed?

a) import b) math c) sqrt d) math.pi e) math.sqrt

User-defined functions. Variable types; type contract; revising code.

(11-12) Given the following Python code:

```python
0 import math
1
2 def isInCircle(x, y):
3     '''(number, number) -> ??
4     Quiz.
5     '''
6     d = math.sqrt(x**2 + y**2)
7     isIn = (d <= 1)
8     return isIn
```

(11) Complete the type contract:

a) int b) float c) number d) bool e) str

(12) Indicate which lines of code would need to be changed for `isInCircle` to check whether point `(x, y)` were inside a circle with a radius of any length.

a) 0, 9 b) 2, 3, 8 c) 2, 8, 9 d) 2, 8 e) 7, 8, 9

Variable scope – local and global variables. Parameter passing.

(13-15) Given the following Python code:

```python
def quadruple(x):
    ''' quiz '''
    y = 4
    result = y * x
    return result
```
>>> x = 5
>>> quadruple(10)
-1
>>> x
-2
>>> y
-3

(13) Replace ??-1 with the expected result:

a) 5 b) 10 c) 20 d) 40 e) NameError

(14) Replace ??-2 with the expected result:

a) 5 b) 10 c) 20 d) 40 e) NameError

(15) Replace ??-3 with the expected result:

a) 4 b) 16 c) 10 d) 40 e) NameError

Be careful around Boolean values, which can lead to interesting bugs.
(16) Given the following Python code:

```python
0    def isDivisible(m, n):
1       ''' quiz '''
2       return m % n == 0
4    def higherLevel(m, n):
5       ''' quiz '''
7       if isDivisible(m, n):
8           print('yes')
9       else:
10          print('no')
12       return None
```

Which of the following lines of code, if substituted for line 8, would affect the result of executing

```python
>>> isDivisible(7, 2)
```

a) if isDivisible:

b) if isDivisible(m, n) == True:

c) isDiv = isDivisible(m, n)
 if isDiv:

d) a) and b)

e) none of these changes would affect the result