Support Vector Machines (SVMs)

Based on slides by Daniel Lowd, Doina Precup and others
Binary Classification Revisited

- Consider a linearly separable binary classification data set \(\{x_i, y_i\}_{i=1}^m \).
- There is an infinite number of hyperplanes that separate the classes:

- Which plane is best?
- Relatedly, for a given plane, for which points should we be most confident in the classification?
The margin, and linear SVMs

- For a given separating hyperplane, the *margin* is two times the (Euclidean) distance from the hyperplane to the nearest training example.

- It is the width of the “strip” around the decision boundary containing no training examples.

- A linear SVM is a perceptron for which we choose w, w_0 so that margin is maximized.
Distance to the decision boundary

- Suppose we have a decision boundary that separates the data.

- Let γ_i be the distance from instance x_i to the decision boundary.
- How can we write γ_i in term of x_i, y_i, w, w_0?
Distance to the decision boundary

- The vector \mathbf{w} is normal to the decision boundary. Thus, $\frac{\mathbf{w}}{||\mathbf{w}||}$ is the unit normal.
- The vector from the B to A is $\gamma_i \frac{\mathbf{w}}{||\mathbf{w}||}$.
- B, the point on the decision boundary nearest \mathbf{x}_i, is $\mathbf{x}_i - \gamma_i \frac{\mathbf{w}}{||\mathbf{w}||}$.
- As B is on the decision boundary,

$$\mathbf{w} \cdot \left(\mathbf{x}_i - \gamma_i \frac{\mathbf{w}}{||\mathbf{w}||} \right) + w_0 = 0$$

- Solving for γ_i yields, for a positive example:

$$\gamma_i = \frac{\mathbf{w}}{||\mathbf{w}||} \cdot \mathbf{x}_i + \frac{w_0}{||\mathbf{w}||}$$
The margin

- The *margin of the hyperplane* is $2M$, where $M = \min_i \gamma_i$
- The most direct statement of the problem of finding a maximum margin separating hyperplane is thus

$$
\max_{w, w_0} \min_i \gamma_i
$$

$$
\equiv \max_{w, w_0} \min_i y_i \left(\frac{w}{\|w\|} \cdot x_i + \frac{w_0}{\|w\|} \right)
$$

- This turns out to be inconvenient for optimization, however. . .
Treating γ_i as the constraints

- From the definition of margin, we have:

$$M \leq \gamma_i = y_i \left(\frac{w}{\|w\|} \cdot x_i + \frac{w_0}{\|w\|} \right) \quad \forall i$$

- This suggests:

 maximize M

 with respect to w, w_0

 subject to $y_i \left(\frac{w}{\|w\|} \cdot x_i + \frac{w_0}{\|w\|} \right) \geq M$ for all i

- Problems:
 - w appears nonlinearly in the constraints.
 - This problem is underconstrained. If (w, w_0, M) is an optimal solution, then so is $(\beta w, \beta w_0, M)$ for any $\beta > 0$.
Adding a constraint

- Let’s try adding the constraint that $\|w\|_M = 1$.
- This allows us to rewrite the objective function and constraints as:
 \[
 \min_{w, w_0} \|w\| \\
 \text{w.r.t. } w, w_0 \\
 \text{s.t. } y_i(w \cdot x_i + w_0) \geq 1
 \]
- This is really nice because the constraints are linear.
- The objective function $\|w\|$ is still a bit awkward.
Final formulation

- Let’s maximize $\|\mathbf{w}\|^2$ instead of $\|\mathbf{w}\|$.
 (Taking the square is a monotone transformation, as $\|\mathbf{w}\|$ is positive, so this doesn’t change the optimal solution.)

- This gets us to:

 $$\begin{align*}
 \text{min} & \quad \|\mathbf{w}\|^2 \\
 \text{w.r.t.} & \quad \mathbf{w}, w_0 \\
 \text{s.t.} & \quad y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1
 \end{align*}$$

- This we can solve! How?
 - It is a quadratic programming (QP) problem—a standard type of optimization problem for which many efficient packages are available.
 - Better yet, it’s a convex (positive semidefinite) QP

https://en.wikipedia.org/wiki/Quadratic_programming
Quadratic programming

The quadratic programming problem with n variables and m constraints can be formulated as follows.\[1\] Given:

- a real-valued, n-dimensional vector c,
- an $n \times n$-dimensional real symmetric matrix Q,
- an $m \times n$-dimensional real matrix A, and
- an m-dimensional real vector b,

the objective of quadratic programming is to find an n-dimensional vector x, that will

\[
\text{minimize } \frac{1}{2} x^T Q x + c^T x
\]

subject to $Ax \leq b$,

[1]: https://en.wikipedia.org/wiki/Quadratic_programming
Example

\begin{itemize}
\item \(w = \begin{bmatrix} 49.6504 & 46.8962 \end{bmatrix} \) \quad \(w_0 = -48.6936 \)
\item \(w = \begin{bmatrix} 11.7959 & 12.8066 \end{bmatrix} \) \quad \(w_0 = -12.9174 \)
\end{itemize}
Lagrange multipliers for inequality constraints

- Suppose we have the following optimization problem, called *primal*:

\[
\min_w \ f(w)
\]

such that \(g_i(w) \leq 0, \ i = 1 \ldots k \)

- We define the *generalized Lagrangian*:

\[
L(w, \alpha) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w), \tag{1}
\]

where \(\alpha_i, \ i = 1 \ldots k \) are the Lagrange multipliers.
A different formalization

- Consider $P(w) = \max_{\alpha: \alpha_i \geq 0} L(w, \alpha)$
- Observe that the follow is true (see extra notes):

$$P(w) = \begin{cases} f(w) & \text{if all constraints are satisfied} \\ +\infty & \text{otherwise} \end{cases}$$

- Hence, instead of computing $\min_w f(w)$ subject to the original constraints, we can compute:

$$p^* = \min_w P(w) = \min_w \max_{\alpha: \alpha_i \geq 0} L(w, \alpha)$$
Dual optimization problem

- Let $d^* = \max_{\alpha: \alpha_i \geq 0} \min_w L(w, \alpha)$ (max and min are reversed).
- We can show that $d^* \leq p^*$.
 - Let $p^* = L(w^p, \alpha^p)$
 - Let $d^* = L(w^d, \alpha^d)$
 - Then $d^* = L(w^d, \alpha^d) \leq L(w^p, \alpha^d) \leq L(w^p, \alpha^p) = p^*$.
Dual optimization problem

- If f, g_i are convex and the g_i can all be satisfied simultaneously for some w, then we have equality: $d^* = p^* = L(w^*, \alpha^*)$

- Moreover w^*, α^* solve the primal and dual if and only if they satisfy the following conditions (called Karush-Kuhn-Tucker):

\[
\frac{\partial}{\partial w_i} L(w^*, \alpha^*) = 0, \ i = 1 \ldots n \tag{2}
\]
\[
\alpha_i^* g_i(w^*) = 0, \ i = 1 \ldots k \tag{3}
\]
\[
g_i(w^*) \leq 0, \ i = 1 \ldots k \tag{4}
\]
\[
\alpha_i^* \geq 0, \ i = 1 \ldots k \tag{5}
\]
Back to maximum margin perceptron

- We wanted to solve (rewritten slightly):
 \[
 \min \frac{1}{2} \|w\|^2 \\
 \text{w.r.t. } w, w_0 \\
 \text{s.t. } 1 - y_i(w \cdot x_i + w_0) \leq 0
 \]
- The Lagrangian is:
 \[
 L(w, w_0, \alpha) = \frac{1}{2} \|w\|^2 + \sum_i \alpha_i (1 - y_i(w \cdot x_i + w_0))
 \]
- The primal problem is: \(\min_{w, w_0} \max_{\alpha: \alpha_i \geq 0} L(w, w_0, \alpha) \)
- We will solve the dual problem: \(\max_{\alpha: \alpha_i \geq 0} \min_{w, w_0} L(w, w_0, \alpha) \)
- In this case, the optimal solutions coincide, because we have a quadratic objective and linear constraints (both of which are convex).
Solving the dual

- From KKT (2), the derivatives of $L(w, w_0, \alpha)$ wrt w, w_0 should be 0
- The condition on the derivative wrt w_0 gives $\sum_i \alpha_i y_i = 0$
- The condition on the derivative wrt w gives:

$$w = \sum_i \alpha_i y_i x_i$$

\Rightarrow Just like for the perceptron with zero initial weights, the optimal solution for w is a linear combination of the x_i, and likewise for w_0.

- The output is

$$h_{w, w_0}(x) = \text{sign} \left(\sum_{i=1}^{m} \alpha_i y_i (x_i \cdot x) + w_0 \right)$$

\Rightarrow Output depends on weighted dot product of input vector with training examples
Solving the dual

- By plugging these back into the expression for L, we get:

$$
\max_{\alpha} \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j)
$$

with constraints: $\alpha_i \geq 0$ and $\sum_{i} \alpha_i y_i = 0$
The support vectors

- Suppose we find optimal αs (e.g., using a standard QP package)
- The α_i will be > 0 only for the points for which $1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) = 0$
- These are the points lying on the edge of the margin, and they are called support vectors, because they define the decision boundary
- The output of the classifier for query point \mathbf{x} is computed as:

$$\text{sgn} \left(\sum_{i=1}^{m} \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{x}) + w_0 \right)$$

Hence, the output is determined by computing the dot product of the point with the support vectors!
Example

Support vectors are in bold
Non-linearly separable data

- A linear boundary might be too simple to capture the class structure.
- One way of getting a nonlinear decision boundary in the input space is to find a linear decision boundary in an expanded space.

Thus, x_i is replaced by $\phi(x_i)$, where ϕ is called a **feature mapping**
Non-linear SVMs: Feature Space

$$\Phi: x \rightarrow \varphi(x)$$
Non-linear SVMs: Feature Space
Margin optimization in feature space

- Replacing x_i with $\phi(x_i)$, the optimization problem to find w and w_0 becomes:
 \[\min_{w, w_0} \|w\|^2 \]
 s.t. $y_i(w \cdot \phi(x_i) + w_0) \geq 1$

- Dual form:
 \[\max_{\alpha_i} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \phi(x_i) \cdot \phi(x_j) \]
 w.r.t. α_i
 s.t. $0 \leq \alpha_i$
 \[\sum_{i=1}^{m} \alpha_i y_i = 0 \]
Feature space solution

- The optimal weights, in the expanded feature space, are \(w = \sum_{i=1}^{m} \alpha_i y_i \phi(x_i) \).

- Classification of an input \(x \) is given by:

\[
h_{w,w_0}(x) = \text{sign} \left(\sum_{i=1}^{m} \alpha_i y_i \phi(x_i) \cdot \phi(x) + w_0 \right)
\]

⇒ Note that to solve the SVM optimization problem in dual form and to make a prediction, we only ever need to compute *dot-products of feature vectors*.
Kernel functions

- Whenever a learning algorithm (such as SVMs) can be written in terms of dot-products, it can be generalized to kernels.

- A kernel is any function $K : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ which corresponds to a dot product for some feature mapping ϕ:

$$K(x_1, x_2) = \phi(x_1) \cdot \phi(x_2) \text{ for some } \phi.$$

- Conversely, by choosing feature mapping ϕ, we implicitly choose a kernel function.

- Recall that $\phi(x_1) \cdot \phi(x_2) = \cos \angle(x_1, x_2)$ where \angle denotes the angle between the vectors, so a kernel function can be thought of as a notion of similarity.
The “kernel trick”

- If we work with the dual, we do not actually have to ever compute the feature mapping \(\phi \). We just have to compute the similarity \(K \).

- That is, we can solve the dual for the \(\alpha_i \):

\[
\begin{align*}
\max_{\alpha_i} & \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j K(x_i, x_j) \\
\text{w.r.t.} & \quad \alpha_i \\
\text{s.t.} & \quad 0 \leq \alpha_i \\
& \quad \sum_{i=1}^{m} \alpha_i y_i = 0
\end{align*}
\]

- The class of a new input \(\mathbf{x} \) is computed as:

\[
h_{\mathbf{w}, w_0}(\mathbf{x}) = \text{sign} \left(\sum_{i=1}^{m} \alpha_i y_i \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}) + w_0 \right) = \text{sign} \left(\sum_{i=1}^{m} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0 \right)
\]

- Often, \(K(\cdot, \cdot) \) can be evaluated in \(O(n) \) time—a big savings!
Nonlinear SVMs: The Kernel Trick

- An example:

2-dimensional vectors \(\mathbf{x} = [x_1 \ x_2] \);

let \(K(u,v) = (1 + u^T v)^2 \),

Need to show that \(K(u,v) = \phi(u)^T \phi(v) \):

\[
K(u,v) = (1 + u^T v)^2, \\
= 1 + u_1^2 v_1^2 + 2 u_1 v_1 u_2 v_2 + u_2^2 v_2^2 + 2 u_1 v_1 + 2 u_2 v_2 \\
= [1 \ u_1^2 \ \sqrt{2} u_1 u_2 \ u_2^2 \ \sqrt{2} u_1 \ \sqrt{2} u_2]^T [1 \ v_1^2 \ \sqrt{2} v_1 v_2 \ v_2^2 \ \sqrt{2} v_1 \ \sqrt{2} v_2] \\
= \phi(u)^T \phi(v), \text{ where } \phi(x) = [1 \ x_1^2 \ \sqrt{2} x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]
\]
Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
 - Linear kernel: \(K(x_i, x_j) = x_i^T x_j \)
 - Polynomial kernel: \(K(x_i, x_j) = (1 + x_i^T x_j)^p \)
 - Gaussian (Radial-Basis Function (RBF)) kernel:
 \[
 K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)
 \]
 - Sigmoid:
 \[
 K(x_i, x_j) = \tanh(\beta_0 x_i^T x_j + \beta_1)
 \]

- In general, functions that satisfy Mercer’s condition can be kernel functions: Kernel matrix should be positive semidefinite.
Example

Solutions:
1) Nonlinear classifiers
2) Increase **dimensionality** of dataset and add a non-linear mapping Φ

\[
\begin{bmatrix} x \\ x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} x \\ x^2 \end{bmatrix}
\]

$2x^2 = 1 \iff 2x_2 = 1$
Example: String kernel

- Very important for DNA matching, text classification, ...
- Example: in DNA matching, we use a sliding window of length k over the two strings that we want to compare
- The window is of a given size, and inside we can do various things:
 - Count exact matches
 - Weigh mismatches based on how bad they are
 - Count certain markers, e.g. AGT
- The kernel is the sum of these similarities over the two sequences
- How do we prove this is a kernel?
Regularization with SVMs

- Kernels are a powerful tool for allowing non-linear, complex functions
- But now the number of parameters can be as high as the number of instances!
- With a very specific, non-linear kernel, each data point may be in its own partition
- With linear and logistic regression, we used regularization to avoid overfitting
- We need a method for allowing regularization with SVMs as well.
Soft margin linear classifier

- For the data that is not linear separable (noisy data, outliers, etc.)

- Slack variables ξ_i can be added to allow misclassification of difficult or noisy data points
Soft margin classifiers

- Recall that in the linearly separable case, we compute the solution to the following optimization problem:
 \[
 \begin{align*}
 \text{min} & \quad \frac{1}{2} \| \mathbf{w} \|^2 \\
 \text{w.r.t.} & \quad \mathbf{w}, w_0 \\
 \text{s.t.} & \quad y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1
 \end{align*}
 \]

- If we want to allow misclassifications, we can relax the constraints to:
 \[
 y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1 - \xi_i
 \]

- If \(\xi_i \in (0, 1) \), the data point is within the margin
- If \(\xi_i \geq 1 \), then the data point is misclassified
- We define the soft error as \(\sum_i \xi_i \)
- We will have to change the criterion to reflect the soft errors
New problem formulation with soft errors

- Instead of:
 \[
 \min_{\mathbf{w}, w_0} \frac{1}{2} \|\mathbf{w}\|^2 \\
 \text{w.r.t. } \mathbf{w}, w_0 \\
 \text{s.t. } y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1
 \]

 we want to solve:
 \[
 \min_{\mathbf{w}, w_0, \xi_i} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i \\
 \text{w.r.t. } \mathbf{w}, w_0, \xi_i \\
 \text{s.t. } y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1 - \xi_i, \xi_i \geq 0
 \]

- Note that soft errors include points that are misclassified, as well as points within the margin

- There is a linear penalty for both categories

- The choice of the constant C controls overfitting
A built-in overfitting framework

\[
\begin{align*}
\min \quad & \frac{1}{2}\|\mathbf{w}\|^2 + C \sum_i \xi_i \\
\text{w.r.t.} \quad & \mathbf{w}, w_0, \xi_i \\
\text{s.t.} \quad & y_i(\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1 - \xi_i \\
& \xi_i \geq 0
\end{align*}
\]

- If \(C \) is 0, there is no penalty for soft errors, so the focus is on maximizing the margin, even if this means more mistakes.
- If \(C \) is very large, the emphasis on the soft errors will cause decreasing the margin, if this helps to classify more examples correctly.
- Internal cross-validation is a good way to choose \(C \) appropriately.
Like before, we can write a Lagrangian for the problem and then use the dual formulation to find the optimal parameters:

\[
L(w, w_0, \alpha, \xi, \mu) = \frac{1}{2}||w||^2 + C \sum_i \xi_i \\
+ \sum_i \alpha_i (1 - \xi_i - y_i(w_i \cdot x_i + w_0)) + \sum_i \mu_i \xi_i
\]

All the previously described machinery can be used to solve this problem.

Note that in addition to \(\alpha_i\), we have coefficients \(\mu_i\), which ensure that the errors are positive, but do not participate in the decision boundary.

\[
\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j (\phi(x_i) \cdot \phi(x_j))
\]

with constraints: \(0 \leq \alpha_i \leq C\) and \(\sum_i \alpha_i y_i = 0\).
Soft margin optimization with kernels

- Replacing x_i with $\phi(x_i)$, the optimization problem to find w and w_0 becomes:
 \[
 \min_{w, w_0, \zeta_i} \|w\|^2 + C \sum_i \zeta_i \\
 \text{s.t. } y_i(w \cdot \phi(x_i) + w_0) \geq (1 - \zeta_i) \\
 \zeta_i \geq 0
 \]

- Dual form and solution have similar forms to what we described last time, but in terms of kernels
Getting SVMs to work in practice

- Two important choices:
 - Kernel (and kernel parameters)
 - Regularization parameter C

- The parameters may interact!
 E.g. for Gaussian kernel, the larger the width of the kernel, the more biased the classifier, so low C is better

- Together, these control overfitting: always do an internal parameter search, using a validation set!

- Overfitting symptoms:
 - Low margin
 - Large fraction of instances are support vectors
Solving the quadratic optimization problem

- Many approaches exist
- Because we have constraints, gradient descent does not apply directly (the optimum might be outside of the feasible region)
- Platt’s algorithm is the fastest current approach, based on coordinate ascent
Coordinate ascent

- Suppose you want to find the maximum of some function $F(\alpha_1, \ldots, \alpha_n)$
- Coordinate ascent optimizes the function by repeatedly picking an α_i and optimizing it, while all other parameters are fixed
- There are different ways of looping through the parameters:
 - Round-robin
 - Repeatedly pick a parameter at random
 - Choose next the variable expected to make the largest improvement
 - ...
Our optimization problem (dual form)

\[
\max_{\alpha} \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j (\phi(x_i) \cdot \phi(x_j))
\]

with constraints: \(0 \leq \alpha_i \leq C\) and \(\sum_i \alpha_i y_i = 0\)

- Suppose we want to optimize for \(\alpha_1\) while \(\alpha_2, \ldots, \alpha_n\) are fixed
- We cannot do it because \(\alpha_1\) will be completely determined by the last constraint: \(\alpha_1 = -y_1 \sum_{i=2}^{m} \alpha_i y_i\)
- Instead, we have to optimize \textit{pairs of parameters} \(\alpha_i, \alpha_j\) together
Sequential minimal optimization (SMO)

- Suppose that we want to optimize α_1 and α_2 together, while all other parameters are fixed.
- We know that $y_1 \alpha_1 + y_2 \alpha_2 = -\sum_{i=1}^{m} y_i \alpha_i = \xi$, where ξ is a constant.
- So $\alpha_1 = y_1 (\xi - y_2 \alpha_2)$ (because y_1 is either $+1$ or -1 so $y_1^2 = 1$).
- This defines a line, and any pair α_1, α_2 which is a solution has to be on the line.
- We also know that $0 \leq \alpha_1 \leq C$ and $0 \leq \alpha_2 \leq C$, so the solution has to be on the line segment inside the rectangle below.
Sequential minimal optimization (SMO)

- By plugging α_1 back in the optimization criterion, we obtain a quadratic function of α_2, whose optimum we can find exactly.
- If the optimum is inside the rectangle, we take it.
- If not, we pick the closest intersection point of the line and the rectangle.
- This procedure is very fast because all these are simple computations.
Multi-class classification

- one-vs-all
- \(n \) classifiers
- choose the class with the largest margin

- one-vs-one
- \(\frac{n(n-1)}{2} \) classifiers
- choose the class chosen by most classifiers
Complexity

- Quadratic programming is expensive in the number of training examples
- Platt’s SMO algorithm is quite fast though, and other fancy optimization approaches are available
- Best packages can handle 50,000+ instances, but not more than 100,000
- On the other hand, number of attributes can be very high (strength compared to neural nets)
- Evaluating a SVM is *slow if there are a lot of support vectors.*
- Dictionary methods attempt to select a subset of the data on which to train.