CIS 410/510 (Spring 2019): Multi-Agent Systems and Real-world Applications Final Review

Thành H. Nguyễn
University of Oregon
Final Exam

- Location and date: 122 MCK, 06/13/2019 at 2:45pm
- Approximately ~120 minutes
- Closed book
- One-page cheat sheet
Covered Topics

- Normal-Form Games
- Extensive-Form Games
- Security Games
- Behavioral Game Theory
- Multi-Agent Learning
Normal-Form Games

- Strategy dominance
- Iterated dominance
- Nash equilibrium
Normal-Form Games

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>Paper</td>
</tr>
<tr>
<td></td>
<td>Rock</td>
</tr>
<tr>
<td></td>
<td>Scissors</td>
</tr>
<tr>
<td>Rock</td>
<td>Paper</td>
</tr>
<tr>
<td></td>
<td>Rock</td>
</tr>
<tr>
<td></td>
<td>Scissors</td>
</tr>
<tr>
<td>Scissors</td>
<td>Paper</td>
</tr>
<tr>
<td></td>
<td>Rock</td>
</tr>
<tr>
<td></td>
<td>Scissors</td>
</tr>
</tbody>
</table>
Extensive-Form Game

- Extensive form representation

- Sub-game perfect equilibrium
Security Games

- Strategies
 - Mixed strategies
 - Compact representation
 - Sampling joint schedule

- Strong Stackelberg equilibrium

- ORIGAMI
Behavioral Game Theory

- BRASS: address bounded rationality
 - epsilon:

- GUARD: address observation uncertainty
 - Anchoring bias

- Quantal Response:
 - Lambda

- Prospect Theory
Multi-Agent Learning

- Markov Decision Process (MDP)
 - Optimal policy

- Reinforcement learning
 - q-learning
 - Exploration: epsilon-greedy, exploration function
Markov Decision Process

- Start state: A
- $r(A) = 3$, $r(C) = 5$, $r(D) = 10$, $\gamma = 0.5$
- $r(B) = 1$
- $r(B) = -10$