COUNT SUBSEQUENCES

A common problem is to determine whether a string S contains a string T as a subsequence. That is, is it possible to remove some of the characters of S and end up with T? For example, if $S=$ABCABC and $T=$AC, then the answer is “yes”. Here we consider a related question: in how many distinct ways is T a subsequence of S? Using $S=$ABCABC and $T=$AC again, the answer should be 3: _ABCABC_, _ABCABC_, and _ABCABC_.

input
The first line of input contains an integer C (≤ 1000), where C is the number of test cases. The next C lines each contain 2 space-separated strings, S T. You can assume that S and T consist of lower case characters (a–z) and that $1 \leq \text{len}(T) \leq \text{len}(S) \leq 33$.

output
The output C integers on separate lines, each indicating the number of distinct ways in which T can be a subsequence of S.

<table>
<thead>
<tr>
<th>Sample Input</th>
<th>Sample Output</th>
</tr>
</thead>
</table>
| 4
abcabc ac
babgbag bag
aaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaa
abc cba | 3
5
184756
0 |

Note: The output in the third case can be explained as “20 choose 10”=$C(20,10)=184756$.