Dijkstra's Algorithm

Single source shortest path
No negative weight edges

idea
- Start with s at distance 0
 - S is set of nodes whose distances are known repeatedly
 - find vertex u ∈ V - S whose shortest path estimate is minimum
 - relax all edges leaving u

Dijkstra (G, w, s)

Initialize Single Source (G, s)
for each v ∈ V
 v.dist = ∞, v.prev = nil
s.dist = 0
Q = V priority queue
while Q not empty do
 u = Q. extract min
 S = S ∪ {u}
 for each vertex v ∈ adj[u]
 relax (u, v)
relax (u, v)
if v.dist > u.dist + w(u, v)
 Then v.dist = u.dist + w(u, v)
 v.prev = u

Time:
- if Q is binary heap (Adjacency List) V extracting E heap燃烧 key
 O((E + V) log V)
- if Q is Fibonacci heap
 O(E log V + E)

O(E log V)
Proof of Correctness

Let $d(s,v)$ be the (actual) length of the shortest path from s to v.

At the start of each iteration of the while loop:

$v \cdot \text{dist} = d(s,v)$ for all $v \in S$

Alternate:
- For all $v \in S$, $v \cdot \text{dist} = d(s,v)$
- For all $v \notin S$, $v \cdot \text{dist}$ is the length of the shortest path whose intermediate vertices are in S

Also note:

Fact: If u is an intermediate vertex on the shortest path from s to v, then that part of the path from s to u is the shortest path to u.
Let \(u \) be chosen as the node with minimum \(u \cdot \text{dist} \).

Assume that it is not the length of the shortest path, \(d(s,u) < u \cdot \text{dist} \).

By part II, it is the shortest path going through \(S \). Thus the actual shortest path must include some nodes not in \(S \).

Let \(x \) be last node in \(S \), \(y \) first node outside. (Note: path could go back into \(S \)).

By fact, \(y \cdot \text{dist} = d(s,y) \).

So \(y \cdot \text{dist} = d(s,y) < d(s,u) < u \cdot \text{dist} \), \(\uparrow \leq \uparrow \) (no weight edges).

But then \(u \) would not have been chosen. Contradiction.

Proof of part II: correctness of relax.