the power of \(\exists \)
non-deterministic polynomial

- non-determinism allows a choice of next step
- used for yes/no problems
- if there is a choice of next steps that makes it say yes, then it “accepts”
- runs in polynomial time

- ACCEPTS iff \exists poly-length computation leading to “yes”
some of our fave NP problems

3SAT: given 3cnf formula F on variables $x_1, x_2, ..., x_n$, is there an assignment of true/false to the x_i which makes $F[x_1, ..., x_n]$ true?

ex: $(x_3 \lor \neg x_5 \lor \neg x_2) \land (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_5 \lor \neg x_2) \land (x_3 \lor \neg x_5 \lor \neg x_2)$

3cnf instance:

- a literal is an x_i or an $\neg x_i$
- a clause is the OR of up to 3 literals
- a formula is the AND (conjunction) of clauses

nondeterministic algorithm

```
for i = 1 to n
    set $x[i] = 0$ or 1 (nondet step)

if $F[x[1], ..., x[n]]$ is true
    then ACCEPT
else REJECT
```

if F is satisfiable, there exists a way for this algorithm to reach an accepting state
3COL: Given a graph G, is there an assignment of 3 colors to the nodes of G so that no two adjacent nodes have the same color?

HP: (Hamilton path) Does G have a path that starts at one node, ends at another, and visits all the other nodes exactly once?

TSP: (travelling salesman problem) Given a weighted graph G and a bound B, is there a cycle that traverses all nodes of G and has total weight at most B?

LP: Given a graph G and integer B, is there a simple path in G of length at least B?
Vertex Cover: Given a graph G and integer k, is there a set C of at most k vertices such that each edge of G has an endpoint in C?

Independent Set: Given a graph G, is there a set I of at least k vertices such that no two vertices in I are connected by an edge?

Note: C is a vertex cover iff $V-C$ is an independent set.

Clique: Given a graph G and integer k, is there a set C of at least k vertices such that all pairs of nodes in C are connected by an edge?

Subset Sum: Given a set S of integers and an integer W, is there a subset of S that sums to exactly W?
Sequencing with release times and deadlines: Given a set of tasks, where each task \(t \) has a release time \(r(t) \), length \(l(t) \), and deadline, \(d(t) \), is there a schedule on a single processor so that each \(t \) is processed after \(r(t) \) and finishes before \(d(t) \)?

Knapsack:

Bin Packing:
many characterizations of NP

• problems with short proofs that can be verified in poly-time

• a set A is in NP if there is a poly-time checkable relation R such that
 \[A = \{ x \mid \exists y \ (|y| \leq |x|^k) \ R(x,y) \} \]

• existential second-order logic (Fagin’s Theorem)

• problems with proofs easy to check, hard to find
NP-Complete

the hardest problems in NP

if one NP-complete problem can be solved in poly-time, then all of NP can be solved in poly-time

main point:
no one knows if any NP complete problem can be efficiently solved – it is one of the big open problems of computer science and/or mathematics
The diagram illustrates the relationships between complexity classes: P, NP, NP-Complete, and NP-Hard.

- **P** represents problems solvable in polynomial time.
- **NP** represents problems for which a solution can be verified in polynomial time.
- **NP-Complete** is a subset of NP containing problems that are as hard as any other problem in NP.
- **NP-Hard** is a class of problems that are at least as hard as the hardest problems in NP.

The diagram shows:
- **P ≠ NP** on the left side, indicating that P is not equal to NP.
- **P = NP** on the right side, suggesting that P equals NP, which implies all NP problems are also in P and can be solved in polynomial time.

The vertical axis represents complexity.
handled by reductions

for example, the problem of 3SAT can be reduced to 3COL, which we write $3\text{SAT} \leq_p 3\text{COL}$

to be done in class, and is a “proof by widget”, but uses the graph below

note: this graph cannot be colored with three colors if the corners have the same color
reductions

- we say $A \leq_p B$ if a poly-time solution to B gives a poly time solution to A
- K is NP-hard if for all A in NP, $A \leq_p K$
- K is NP-complete if K is NP-hard and K is in NP

- **Cook-Levin Theorem**: SAT is NP-complete
counting classes

• #P
• called “sharp-P”
• a set of functions which count the number of accepting computations of NP machines
• example: #SAT, the number of satisfying formulas of a boolean formula F
• #P is much stronger than NP