CIS 471/571 (Fall 2019): Introduction to Artificial Intelligence

Lecture 3: Informed Search

Thanh H. Nguyen

Most slides are by Pieter Abbeel, Dan Klein, Luke Zettlemoyer, John DeNero, Stuart Russell, Andrew Moore, or Daniel Lowd
Source: http://ai.berkeley.edu/home.html
Reminder

- **Homework 1: Search**
 - Deadline: Oct 16th, 2019

- **Project 1: Search**
 - Deadline: Oct 18th, 2019
Today

- Uninformed Search
 - Uniform Cost Search

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search

- Graph Search
Recap: Search

- **Search problem:**
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test

- **Search tree:**
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- **Search algorithm:**
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans
Example: Pancake Problem

Cost: Number of pancakes flipped
Example: Pancake Problem

State space graph with costs as weights
General Tree Search

function `TREE-SEARCH(problem, strategy)` returns a solution, or failure
initialize the search tree using the initial state of `problem`
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to `strategy`
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three
Total cost: 7
Uninformed Search
Uniform-Cost Search (UCS)

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)
UCS Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!

- Is it optimal?
 - Yes!
Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every “direction”
 - No information about goal location
Informed Search
Search Heuristics

- A heuristic is:
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - Examples: Manhattan distance, Euclidean distance for pathing
Example: Heuristic Function

h(x)
Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place
Greedy Search
Example: Heuristic Function

Straight-line distance to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobra 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

\(h(x) \)
Greedy Search

- Expand the node that seems closest...

- What can go wrong?
Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* $g(n)$
- **Greedy** orders by goal proximity, or *forward cost* $h(n)$

- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$
When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!
Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe.

Admissible (optimistic) heuristics never outweigh true costs.
Admissible Heuristics

A heuristic h is *admissible* (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal.

Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A* Tree Search
Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$

\[
f(n) = g(n) + h(n) \quad \text{Definition of f-cost}
\]
\[
f(n) \leq g(A) \quad \text{Admissibility of h}
\]
\[
g(A) = f(A) \quad h = 0 \text{ at a goal}
\]
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$

$g(A) < g(B)$ \hspace{1cm} B is suboptimal

$f(A) < f(B)$ \hspace{1cm} $h = 0$ at a goal
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$
 3. n expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal
Properties of A*
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?

- How many successors from the start state?
- What should the costs be?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$
- This is a *relaxed-problem* heuristic

![Start State and Goal State with statistics](image)

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

Total *Manhattan* distance

Why is it admissible?

\[h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \]

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
How about using the *actual cost* as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?

With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.

- Inadmissible heuristics are often useful too (why?)
Trivial Heuristics, Dominance

- Dominance: $h_a \geq h_c$ if
 \[
 \forall n : h_a(n) \geq h_c(n)
 \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[
 h(n) = \max(h_a(n), h_b(n))
 \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?
Graph Search

- In BFS, for example, we shouldn’t bother expanding some nodes (which, and why?)
Graph Search

- Very simple fix: never expand a state type twice

```plaintext
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
    if fringe is empty then return failure
    node ← REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE[node] is not in closed then
        add STATE[node] to closed
        fringe ← INSERTALL(EXPEND(node, problem), fringe)
end
```

- Can this wreck completeness? Why or why not?
- How about optimality? Why or why not?
A* Graph Search Gone Wrong

State space graph

Search tree

S (0+2)

A (1+4) B (1+1)

C (2+1) C (3+1)

G (5+0) G (6+0)
Consistency of Heuristics

- **Main idea:** estimated heuristic costs ≤ actual costs
 - **Admissibility:** heuristic cost ≤ actual cost to goal
 \[h(A) \leq \text{actual cost from A to G} \]
 - **Consistency:** heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost(A to C)} \]

- **Consequences of consistency:**
 - The f value along a path never decreases
 \[h(A) \leq \text{cost(A to C)} + h(C) \]
 \[f(A) = g(A) + h(A) \leq g(A) + \text{cost(A to C)} + h(C) \leq f(C) \]
 - A* graph search is optimal
Optimality of A* Graph Search
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal
Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)

- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
A*: Summary
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems
Tree Search Pseudo-Code

function Tree-Search(problem, fringe) return a solution, or failure

fringe ← Insert(make-node(initial-state[problem]), fringe)

loop do
 if fringe is empty then return failure

 node ← Remove-Front(fringe)

 if Goal-Test(problem, state[node]) then return node

 for child-node in Expand(state[node], problem) do
 fringe ← Insert(child-node, fringe)
 end
end
Graph Search Pseudo-Code

```plaintext
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
    closed ← an empty set
    fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        if STATE[node] is not in closed then
            add STATE[node] to closed
            for child-node in EXPAND(STATE[node], problem) do
                fringe ← INSERT(child-node, fringe)
            end
        end
    end
```
Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)
 Reminder: \(f(n) = g(n) + h(n) = \text{cost to } n + \text{heuristic} \)
 - Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There’s a problem with this argument. What are we assuming is true?
Optimality of A* Graph Search

Proof:

- New possible problem: some \(n \) on path to \(G^* \) isn’t in queue when we need it, because some worse \(n' \) for the same state dequeued and expanded first (disaster!)
- Take the highest such \(n \) in tree
- Let \(p \) be the ancestor of \(n \) that was on the queue when \(n' \) was popped
 - \(f(p) < f(n) \) because of consistency
 - \(f(n) < f(n') \) because \(n' \) is suboptimal
 - \(p \) would have been expanded before \(n' \)
- Contradiction!