CIS 451/551

week 5: Normalization
Goal

• formalize notions of clean design
• motto: “One fact in one place”

• deletion anomaly
• insertion anomaly
• update anomaly
brief overview

1. First Normal Form (1NF)
 • all entries are atomic
2. Second Normal Form (2NF)
 • remove partial dependencies
3. Third Normal Form (3NF)
 • remove transitive dependencies
4. Boyce-Codd Normal Form (BCNF)
 • like 3NF but deal with problems from multiple primary keys
5. Fourth Normal Form (4NF)
 • like BCNF but for multi-valued dependencies
6. others: 5NF, 6NF (obscure)
first normal form

- all relational schemas are in 1NF by assumption
- the idea is that all entries contain one piece of information
- it cannot be broken up
- no sets, subfields in an attribute

- “one place holds one fact” 😊
- this rule is frequently broken !!
functional dependency

\[A \rightarrow B \]

is taken to mean that the value of B depends on the value of A,
in other words, if any two rows in a table have the same A entry,
they must have the same B entry

- for example, \(\text{zipcode} \rightarrow \text{state} \)
- related to the concept of keys
partial dependency

• a *full* functional dependency $X \rightarrow Y$ is the case when removing anything from X will cause the dependency to not hold

• also called *irreducibly dependent*

• here X and Y can be sets of attributes
2NF: second normal form

• R is in 2NF if every attribute not belonging to the primary key is fully functionally dependent on the primary key
• “no partial dependencies”

• (example) STUDENT_ENROLL: ssn, crn, name, bdate
 with partial dependency $ssn \rightarrow name, bdate$

• should be decomposed
decomposing a relation based on FD

Given a relation R having a violation of $X \rightarrow Y$ we can decompose R as follows

$$R1 = R - Y \quad R2 = X \cup Y$$

note that $R = R1 \bowtie R2$
example decomposition

• let $R = \text{ssn, crn, name, bdate}$

• ... and $ssn \rightarrow \text{name, bdate}$ be a violating (of 2NF) FD

• according to the decomposition strategy
 • $R1 = R-Y = \text{ssn crn}$
 • $R2 = X \cup Y = \text{ssn name bdate}$
3NF: third normal form

• consider a chain of FDs of the form
 • \(<\text{key}> \rightarrow <\text{non-key}> \rightarrow <\text{non-key}>\)
 • the second FD \(<\text{non-key}> \rightarrow <\text{non-key}>\) is called a transitive dependency

• R is in 3NF if it is in 2NF and has no transitive dependencies

• (example) SUPPLIER: \(s\#, \text{city}, \text{status}\)
 • FDs \(s\# \rightarrow \text{city}, \text{status}\) and \(\text{city} \rightarrow \text{status}\)
 • in other words, the status of the supplier depends only on the city they are in
 • \(\text{city} \rightarrow \text{status}\) is a transitive dependency and thus SUPPLIER is not in 3NF
key terminology

• a **superkey** is a unique identifier (note that it may not be minimal)
 • CAR: license, make, model, year, vin
 • license is a superkey, so is (license, make) and (license, vin, year)

• a **candidate key** is a minimal superkey
 • CAR has two candidate keys
 1. license
 2. vin

• the **primary key** is a designated candidate key

• any candidate key which is not the primary key is an **alternate key**

• alternate keys can be identified/enforced using the UNIQUE key word in SQL
more on functional dependencies

- let F be a set of functional dependencies
- F^+ is the set of fds that can be derived from F (in obvious ways)
- formally use Armstrong’s Axioms
 - let $X, Y, \text{ and } Z$ be sets of attributes
 - (reflexivity) if $Y \subseteq X$, then $X \rightarrow Y$
 - (transitivity) if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
 - (augmentation) if $X \rightarrow Y$, then $XZ \rightarrow YZ$

- (informal) a minimal cover for a set of fds F is a ”smaller” set G such that $F^+ = G^+$
formal definition of 3NF

A relation R is in 3NF if for all fds $\alpha \rightarrow \beta \in F^+$ that hold on R at least one of the following conditions is true

• $\alpha \rightarrow \beta$ is trivial,
• α is a superkey for R, or
• each attribute $A \in \beta$ belongs to a candidate key of R
a previous example

- **SUPPLIER**: $s\#$, *city*, *status*
 - FDs $s\# \rightarrow city, status$ and $city \rightarrow status$
- **CK** (candidate keys): $s\#
- **3NF violation**: $city \rightarrow status$
 - it is not trivial
 - *city* is not a superkey
 - *status* does not belong to any candidate key

- So **SUPPLIER** is not in 3NF according to the formal definition either
example with multiple CKs

- R: student, prof, dept
- F: $p \rightarrow d$, $sd \rightarrow p$
- the idea is that a prof (p) is in only one department (d) and a student (s) can be in several departments and in each department they have one advisor
- candidate keys: sd, sp
- R is in 3NF, consider
 - $sd \rightarrow p$: sd is a superkey
 - $p \rightarrow d$: d belongs to a CK
 - (this is not really a full proof)
A relation R is in BCNF if for all fds $\alpha \rightarrow \beta \in F^+$ that hold on R at least one of the following conditions is true

- $\alpha \rightarrow \beta$ is trivial or
- α is a superkey for R

notes
- α holds on R if the attributes in α are also in R
- $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$
last example is not BCNF

- **R**: student, prof, dept
- **F**: $p \rightarrow d, sd \rightarrow p$
- **CK**: sd, sp

- $p \rightarrow d$ is a violation of BCNF
 - not trivial
 - p not a superkey of R
- **BCNF decomposition**
 - R1: student, prof
 - R2: prof, dept

might be ugly need a join to enforce $sd \rightarrow p$
3NF versus BCNF

- if R is in BCNF, then R is in 3NF
- if R is in 3NF and has only one CK, then R is in BCNF

- a decomposition is *dependency preserving* if all FDs can be verified without computing a join
- for every R,F, there is a decomposition into 3NF that is dependency preserving
- this is not always true for BCNF
exercise 1

• relation R: A B C D E F G H I J

• dependencies F:
 • $AB \rightarrow C$
 • $A \rightarrow DE$
 • $B \rightarrow F$
 • $F \rightarrow GH$
 • $D \rightarrow IJ$

• decompose this
exercise 2

• relation R: A B C D E
• dependencies F:
 • $A \rightarrow B$
 • $C \rightarrow D$

• identify highest normal form
• decompose to 3NF/BCNF
exercise 3

• relation R: A B C D
• dependencies F:
 • C → A
 • C → D
 • B → C

• identify highest normal form
• decompose to 3NF/BCNF
exercise 4

• relation R: A B C D
• dependencies F:
 • $D \rightarrow A$
 • $B \rightarrow C$

• identify highest normal form
• decompose to 3NF/BCNF
exercise 5

• relation R: A B C D
• dependencies F:
 • $D \rightarrow A$
 • $ABC \rightarrow D$

• identify highest normal form
• decompose to 3NF/BCNF
exercise 6

• relation R: A B C D

• dependencies F:
 • \(A \rightarrow B \)
 • \(BC \rightarrow D \)
 • \(A \rightarrow C \)

• identify highest normal form

• decompose to 3NF/BCNF
exercise 7

• relation R: A B C D

• dependencies F:
 • $AB \rightarrow C$
 • $AB \rightarrow D$
 • $C \rightarrow A$
 • $D \rightarrow B$

• identify highest normal form

• decompose to 3NF/BCNF
exercise 8

• find a minimal cover, then decompose
• R: A B C D E F G H
• F:
 • \(A \rightarrow B \)
 • \(ABCD \rightarrow E \)
 • \(EF \rightarrow G \)
 • \(EF \rightarrow H \)
 • \(ABCDF \rightarrow EG \)
exercise 9 (trick)

Consider the CANADA_POST relation, illustrated here. The only fd is postOfficeCity→country.

There appears to be no normal form violation but there is clearly redundancy (since country is always ‘Canada’). What’s wrong?

<table>
<thead>
<tr>
<th>postOfficeCity</th>
<th>country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancouver</td>
<td>Canada</td>
</tr>
<tr>
<td>Edmonton</td>
<td>Canada</td>
</tr>
<tr>
<td>Tuktoyaktuk</td>
<td>Canada</td>
</tr>
<tr>
<td>Toronto</td>
<td>Canada</td>
</tr>
<tr>
<td>Corner Brook</td>
<td>Canada</td>
</tr>
<tr>
<td>Saskatoon</td>
<td>Canada</td>
</tr>
</tbody>
</table>
multi-valued dependencies (MVD)

• an mvd such as class → text indicates that each instance of a particular class has the same group of texts
• similar to an fd but refers to several rows
• can express as an fd if we break 1NF
 • class → set_of(text)
• describes redundancy problems not expressible with fds
example

if each instance of a class (such as CIS451) uses the same group of texts, regardless of the instructor, we’d have redundancy in this table. Problem can arise by poor modeling – using a 3-way relationship instead of two 2-way ones.

Here the rule \textit{class} \rightarrow \textit{text} says that each time we add a new instructor for CIS451, we have to enter two rows for the two texts (which are the same as for the other instructor).
4NF: Fourth Normal Form

A relation R is in 4NF if for all mvds $\alpha \rightarrow \beta$ that hold on R at least one of the following conditions is true

- $\alpha \rightarrow \beta$ is trivial or
- α is a superkey for R

notes
- a fd is also a mvd, that is $\alpha \rightarrow \beta$ implies $\alpha \rightarrow \beta$
- therefore if R is in 4NF then R is in BCNF
decompose class-instr-text into 4NF

split based on \textit{class} \rightarrow \textit{text} in the usual way

<table>
<thead>
<tr>
<th>class</th>
<th>instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS451</td>
<td>CW</td>
</tr>
<tr>
<td>MTH231</td>
<td>AB</td>
</tr>
<tr>
<td>CIS451</td>
<td>DD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>class</th>
<th>text</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS451</td>
<td>DB</td>
</tr>
<tr>
<td>CIS451</td>
<td>PHP</td>
</tr>
<tr>
<td>MTH231</td>
<td>Disc</td>
</tr>
</tbody>
</table>